1
|
Roblet S, Priouzeau F, Gambini G, Cottalorda JM, Gastaldi JM, Pey A, Raybaud V, Suarez GR, Serre C, Sabourault C, Dérijard B. From sight to sequence: Underwater visual census vs environmental DNA metabarcoding for the monitoring of taxonomic and functional fish diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177250. [PMID: 39477117 DOI: 10.1016/j.scitotenv.2024.177250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/10/2024]
Abstract
Fish monitoring is essential for assessing the effects of natural and anthropic stressors on marine ecosystems. In this context, environmental DNA (eDNA) metabarcoding appears to be a promising tool, due to its efficiency in species detection. However, before this method can be fully implemented in monitoring programs, more studies are needed to evaluate its ability to assess the composition of fish assemblages compared with traditional survey methods that have been used for decades. Here, we used both eDNA metabarcoding and Underwater Visual Census (UVC) to assess the taxonomic and functional diversity (presence-absence data) of Mediterranean fish communities. We collected eDNA samples and performed UVC strip transects inside and outside four Marine Protected Areas in the Mediterranean Sea. Samples for eDNA analysis were collected by filtering seawater simultaneously at the surface and the bottom, and DNA was amplified using a combination of three sets of primers. We found that eDNA alone made an outstanding characterisation of fish composition with the detection of 95 % of the 60 taxa identified in this study, whereas UVC recovered only 58 % of them. Functional diversity was better evaluated with eDNA than with UVC, with the detection of a greater breadth of functional traits. eDNA was even better at characterising functional than taxonomic diversity, providing reliable information on ecosystem functioning with little sampling effort. Together these results suggest that eDNA metabarcoding offers great potential for surveying complex marine ecosystems. Combining eDNA metabarcoding and UVC in integrated monitoring programs would therefore improve monitoring strategies and enhance our understanding of fish communities, a key step promoting their conservation.
Collapse
Affiliation(s)
- Sylvain Roblet
- Université Côte d'Azur, CNRS, ECOSEAS, 28 Avenue Valrose, 06000 Nice, France.
| | - Fabrice Priouzeau
- Université Côte d'Azur, CNRS, ECOSEAS, 28 Avenue Valrose, 06000 Nice, France.
| | - Gilles Gambini
- Université Côte d'Azur, CNRS, ECOSEAS, 28 Avenue Valrose, 06000 Nice, France.
| | | | | | - Alexis Pey
- THALASSA Marine Research & Environmental Awareness, 286 F Route d'Aspremont, 06690 Tourrette-Levens, France
| | - Virginie Raybaud
- Université Côte d'Azur, CNRS, ECOSEAS, 28 Avenue Valrose, 06000 Nice, France.
| | | | - Christophe Serre
- Département des Alpes-Maritimes, Direction Environnement et Gestion des Risques, Centre administratif départemental, 147 boulevard du Mercantour, 06201 Cedex 3 Nice, France.
| | - Cécile Sabourault
- Université Côte d'Azur, CNRS, ECOSEAS, 28 Avenue Valrose, 06000 Nice, France.
| | - Benoit Dérijard
- Université Côte d'Azur, CNRS, ECOSEAS, 28 Avenue Valrose, 06000 Nice, France.
| |
Collapse
|
2
|
Deo R, John CM, Zhang C, Whitton K, Salles T, Webster JM, Chandra R. Deepdive: Leveraging Pre-trained Deep Learning for Deep-Sea ROV Biota Identification in the Great Barrier Reef. Sci Data 2024; 11:957. [PMID: 39227607 PMCID: PMC11372175 DOI: 10.1038/s41597-024-03766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Understanding and preserving the deep sea ecosystems is paramount for marine conservation efforts. Automated object (deep-sea biota) classification can enable the creation of detailed habitat maps that not only aid in biodiversity assessments but also provide essential data to evaluate ecosystem health and resilience. Having a significant source of labelled data helps prevent overfitting and enables training deep learning models with numerous parameters. In this paper, we contribute to the establishment of a significant deep-sea remotely operated vehicle (ROV) image classification dataset with 3994 images featuring deep-sea biota belonging to 33 classes. We manually label the images through rigorous quality control with human-in-the-loop image labelling. Leveraging data from ROV equipped with advanced imaging systems, our study provides results using novel deep-learning models for image classification. We use deep learning models including ResNet, DenseNet, Inception, and Inception-ResNet to benchmark the dataset that features class imbalance with many classes. Our results show that the Inception-ResNet model provides a mean classification accuracy of 65%, with AUC scores exceeding 0.8 for each class.
Collapse
Affiliation(s)
- Ratneel Deo
- Geocoastal Research Group, School of Geosciences, University of Sydney, New South Wales, Australia.
- ITTC ARC Centre for Data Analytics for Resources and Environment, Biomedical Building, University of Sydney, New South Wales, Australia.
- Transitional Artificial Intelligence Research Group, School of Mathematics and Statistics, University of New South Wales, Sydney, Australia.
| | - Cédric M John
- Digital Environment Research Institute (DERI), Queen Mary University of London, Empire House, London, E1 1HH, United Kingdom
| | - Chen Zhang
- Geocoastal Research Group, School of Geosciences, University of Sydney, New South Wales, Australia
| | - Kate Whitton
- Geocoastal Research Group, School of Geosciences, University of Sydney, New South Wales, Australia
| | - Tristan Salles
- Geocoastal Research Group, School of Geosciences, University of Sydney, New South Wales, Australia
- ITTC ARC Centre for Data Analytics for Resources and Environment, Biomedical Building, University of Sydney, New South Wales, Australia
| | - Jody M Webster
- Geocoastal Research Group, School of Geosciences, University of Sydney, New South Wales, Australia
- ITTC ARC Centre for Data Analytics for Resources and Environment, Biomedical Building, University of Sydney, New South Wales, Australia
| | - Rohitash Chandra
- ITTC ARC Centre for Data Analytics for Resources and Environment, Biomedical Building, University of Sydney, New South Wales, Australia
- Transitional Artificial Intelligence Research Group, School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Baletaud F, Lecellier G, Gilbert A, Mathon L, Côme JM, Dejean T, Dumas M, Fiat S, Vigliola L. Comparing Seamounts and Coral Reefs with eDNA and BRUVS Reveals Oases and Refuges on Shallow Seamounts. BIOLOGY 2023; 12:1446. [PMID: 37998045 PMCID: PMC10669620 DOI: 10.3390/biology12111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Seamounts are the least known ocean biome. Considered biodiversity hotspots, biomass oases, and refuges for megafauna, large gaps exist in their real diversity relative to other ecosystems like coral reefs. Using environmental DNA metabarcoding (eDNA) and baited video (BRUVS), we compared fish assemblages across five environments of different depths: coral reefs (15 m), shallow seamounts (50 m), continental slopes (150 m), intermediate seamounts (250 m), and deep seamounts (500 m). We modeled assemblages using 12 environmental variables and found depth to be the main driver of fish diversity and biomass, although other variables like human accessibility were important. Boosted Regression Trees (BRT) revealed a strong negative effect of depth on species richness, segregating coral reefs from deep-sea environments. Surprisingly, BRT showed a hump-shaped effect of depth on fish biomass, with significantly lower biomass on coral reefs than in shallowest deep-sea environments. Biomass of large predators like sharks was three times higher on shallow seamounts (50 m) than on coral reefs. The five studied environments showed quite distinct assemblages. However, species shared between coral reefs and deeper-sea environments were dominated by highly mobile large predators. Our results suggest that seamounts are no diversity hotspots for fish. However, we show that shallower seamounts form biomass oases and refuges for threatened megafauna, suggesting that priority should be given to their protection.
Collapse
Affiliation(s)
- Florian Baletaud
- ENTROPIE, Institut de Recherche pour le Développement (IRD), UR, UNC, IFREMER, CNRS, Centre IRD de Nouméa, 98848 Noumea, New Caledonia, France; (F.B.); (G.L.); (L.M.); (M.D.); (S.F.)
- GINGER SOPRONER, 98000 Noumea, New Caledonia, France;
- GINGER BURGEAP, 69000 Lyon, France;
- MARBEC, University of Montpellier, CNRS, IFREMER, 34000 Montpellier, France
| | - Gaël Lecellier
- ENTROPIE, Institut de Recherche pour le Développement (IRD), UR, UNC, IFREMER, CNRS, Centre IRD de Nouméa, 98848 Noumea, New Caledonia, France; (F.B.); (G.L.); (L.M.); (M.D.); (S.F.)
- ISEA, University of New Caledonia, 98800 Noumea, New Caledonia, France
| | | | - Laëtitia Mathon
- ENTROPIE, Institut de Recherche pour le Développement (IRD), UR, UNC, IFREMER, CNRS, Centre IRD de Nouméa, 98848 Noumea, New Caledonia, France; (F.B.); (G.L.); (L.M.); (M.D.); (S.F.)
- CEFE, University of Montpellier, CNRS, EPHE-PSL, IRD, 34000 Montpellier, France
| | | | | | - Mahé Dumas
- ENTROPIE, Institut de Recherche pour le Développement (IRD), UR, UNC, IFREMER, CNRS, Centre IRD de Nouméa, 98848 Noumea, New Caledonia, France; (F.B.); (G.L.); (L.M.); (M.D.); (S.F.)
| | - Sylvie Fiat
- ENTROPIE, Institut de Recherche pour le Développement (IRD), UR, UNC, IFREMER, CNRS, Centre IRD de Nouméa, 98848 Noumea, New Caledonia, France; (F.B.); (G.L.); (L.M.); (M.D.); (S.F.)
| | - Laurent Vigliola
- ENTROPIE, Institut de Recherche pour le Développement (IRD), UR, UNC, IFREMER, CNRS, Centre IRD de Nouméa, 98848 Noumea, New Caledonia, France; (F.B.); (G.L.); (L.M.); (M.D.); (S.F.)
| |
Collapse
|
4
|
Sih TL, Williams AJ, Hu Y, Kingsford MJ. High-resolution otolith elemental signatures in eteline snappers from valuable deepwater tropical fisheries. JOURNAL OF FISH BIOLOGY 2022; 100:1475-1496. [PMID: 35394647 PMCID: PMC9324853 DOI: 10.1111/jfb.15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Marine resources are often shared among countries, with some fish stocks straddling multiple Exclusive Economic Zones, therefore understanding the structure of populations is important for the effective management of fish stocks. Otolith chemical analyses could discriminate among populations based on differences in the chemical composition of otoliths. We used otoliths from two deepwater snappers (flame snapper Etelis coruscans and ruby snapper Etelis boweni) to examine the evidence for population structure across six Pacific Island countries using solution-based inductively coupled plasma mass spectrometry (ICP-MS) for otolith core and whole otolith samples and laser ablation ICP-MS (LA-ICP-MS) for core and edge areas of a cross-sectioned otolith. The inter-species comparison of these methods is important as the two species are often managed under the same regulations. For both species, the two methods demonstrated separation among the locations sampled with high classification accuracy. Smaller laser ablation spot size gave greater temporal resolution over the life-history transect. Comparing the early life-history section of the otoliths (i.e., the core), one interpretation is that young fish experienced more uniform environments in the open ocean as larvae than adults, as the elemental fingerprints had greater overlap among multiple locations. LA-ICP-MS methods had some advantages over solution-based ICP-MS and generally better discrimination for the trace elements investigated. There were substantial differences between species, but both methods suggested nonmixing populations at the regional scale. Otolith chemistry can be an effective tool in discriminating variation for deepwater marine species in multispecies fisheries, and edge measurements from LA-ICP-MS provided the greatest resolution. Although caution should be taken in interpreting the results from relatively small samples sizes, otolith chemical analyses could be useful at these spatial scales to investigate population structure. This information on separate or overlapping populations could be used in future regional fishery management plans.
Collapse
Affiliation(s)
- Tiffany Lorraine Sih
- Marine Biology and Aquaculture, College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- AIMS@JCU partnership with the Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- Australian Research Council Centre of Excellence for Coral Reef StudiesTownsvilleQueenslandAustralia
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityQueenscliffVictoriaAustralia
| | - Ashley John Williams
- Marine Biology and Aquaculture, College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- CSIRO Oceans and AtmosphereHobartTasmaniaAustralia
| | - Yi Hu
- Advanced Analytical CentreJames Cook UniversityTownsvilleQueenslandAustralia
| | - Michael John Kingsford
- Marine Biology and Aquaculture, College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Research Council Centre of Excellence for Coral Reef StudiesTownsvilleQueenslandAustralia
| |
Collapse
|
5
|
Holmes MJ, Venables B, Lewis RJ. Critical Review and Conceptual and Quantitative Models for the Transfer and Depuration of Ciguatoxins in Fishes. Toxins (Basel) 2021; 13:toxins13080515. [PMID: 34437386 PMCID: PMC8402393 DOI: 10.3390/toxins13080515] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 02/08/2023] Open
Abstract
We review and develop conceptual models for the bio-transfer of ciguatoxins in food chains for Platypus Bay and the Great Barrier Reef on the east coast of Australia. Platypus Bay is unique in repeatedly producing ciguateric fishes in Australia, with ciguatoxins produced by benthic dinoflagellates (Gambierdiscus spp.) growing epiphytically on free-living, benthic macroalgae. The Gambierdiscus are consumed by invertebrates living within the macroalgae, which are preyed upon by small carnivorous fishes, which are then preyed upon by Spanish mackerel (Scomberomorus commerson). We hypothesise that Gambierdiscus and/or Fukuyoa species growing on turf algae are the main source of ciguatoxins entering marine food chains to cause ciguatera on the Great Barrier Reef. The abundance of surgeonfish that feed on turf algae may act as a feedback mechanism controlling the flow of ciguatoxins through this marine food chain. If this hypothesis is broadly applicable, then a reduction in herbivory from overharvesting of herbivores could lead to increases in ciguatera by concentrating ciguatoxins through the remaining, smaller population of herbivores. Modelling the dilution of ciguatoxins by somatic growth in Spanish mackerel and coral trout (Plectropomus leopardus) revealed that growth could not significantly reduce the toxicity of fish flesh, except in young fast-growing fishes or legal-sized fishes contaminated with low levels of ciguatoxins. If Spanish mackerel along the east coast of Australia can depurate ciguatoxins, it is most likely with a half-life of ≤1-year. Our review and conceptual models can aid management and research of ciguatera in Australia, and globally.
Collapse
Affiliation(s)
- Michael J. Holmes
- Queensland Department of Environment and Science, Brisbane 4102, Australia;
| | | | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
- Correspondence:
| |
Collapse
|
6
|
Currey-Randall LM, Galaiduk R, Stowar M, Vaughan BI, Miller KJ. Mesophotic fish communities of the ancient coastline in Western Australia. PLoS One 2021; 16:e0250427. [PMID: 33882113 PMCID: PMC8059809 DOI: 10.1371/journal.pone.0250427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
Marine diversity across the Australian continental shelf is shaped by characteristic benthic habitats which are determined by geomorphic features such as paleoshorelines. In north-western Australia there has been little attention on the fish communities that inhabit an ancient coastline at ~125 m depth (the designated AC125), which is specified as a key ecological feature (KEF) of the region and is thought to comprise hard substrate and support enhanced diversity. We investigated drivers of fish species richness and assemblage composition spanning six degrees of latitude along sections of the ancient coastline, categorised as ‘on’ and ‘off’ the AC125 based on depth, across a range of habitats and seafloor complexity (~60–180 m depth). While some surveyed sections of the AC125 had hard bottom substrate and supported enhanced fish diversity, including over half of the total species observed, species richness and abundance overall were not greater on the AC125 than immediately adjacent to the AC125. Instead, depth, seafloor complexity and habitat type explained patterns in richness and abundance, and structured fish assemblages at both local and broad spatial scales. Fewer fishes were associated with deep sites characterized by negligible complexity and soft-bottom habitats, in contrast to shallower depths that featured benthic biota and pockets of complex substrate. Drivers of abundance of common species were species-specific and primarily related to sampling Areas, depth and substrate. Fishes of the ancient coastline and adjacent habitats are representative of mesophotic fish communities of the region, included species important to fisheries and conservation, and several species were observed deeper than their currently known distribution. This study provides the first assessment of fish biodiversity associated with an ancient coastline feature, improving our understanding of the function it plays in regional spatial patterns in abundance of mesophotic fishes. Management decisions that incorporate the broader variety of depths and habitats surrounding the designated AC125 could enhance the ecological role of this KEF, contributing to effective conservation of fish biodiversity on Australia’s north west shelf.
Collapse
Affiliation(s)
| | - Ronen Galaiduk
- Indian Ocean Marine Research Centre, Australian Institute of Marine Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Marcus Stowar
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Brigit I. Vaughan
- Indian Ocean Marine Research Centre, Australian Institute of Marine Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Karen J. Miller
- Indian Ocean Marine Research Centre, Australian Institute of Marine Science, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|