1
|
Responses of Bacterial Taxonomical Diversity Indicators to Pollutant Loadings in Experimental Wetland Microcosms. WATER 2022. [DOI: 10.3390/w14020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Urbanization results in higher stormwater loadings of pollutants such as metals and nutrients into surface waters. This directly impacts organisms in aquatic ecosystems, including microbes. Sediment microbes are known for pollution reduction in the face of contamination, making bacterial communities an important area for bioindicator research. This study explores the pattern of bacterial responses to metal and nutrient pollution loading and seeks to evaluate whether bacterial indicators can be effective as a biomonitoring risk assessment tool for wetland ecosystems. Microcosms were built containing sediments collected from wetlands in the urbanizing Pike River watershed in southeastern Wisconsin, USA, with metals and nutrients added at 7 day intervals. Bacterial DNA was extracted from the microcosm sediments, and taxonomical profiles of bacterial communities were identified up to the genera level by sequencing 16S bacterial rRNA gene (V3–V4 region). Reduction of metals (example: 90% for Pb) and nutrients (example: 98% for NO3−) added in water were observed. The study found correlations between diversity indices of genera with metal and nutrient pollution as well as identified specific genera (including Fusibacter, Aeromonas, Arthrobacter, Bacillus, Bdellovibrio, and Chlorobium) as predictive bioindicators for ecological risk assessment for metal pollution.
Collapse
|
2
|
Effects of Land Use and Pollution Loadings on Ecotoxicological Assays and Bacterial Taxonomical Diversity in Constructed Wetlands. DIVERSITY 2021. [DOI: 10.3390/d13040149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Freshwater ecosystems are affected by anthropogenic alterations. Different studies have extensively studied the concentrations of metals, nutrients, and water quality as measurements of pollution in freshwater ecosystems. However, few studies have been able to link these pollutants to bioindicators as a risk assessment tool. This study aimed to examine the potential of two bioindicators, plant ecotoxicological assays and sediment bacterial taxonomic diversity, in ecological risk assessment for six freshwater constructed wetlands in a rapidly urbanizing watershed with diverse land uses. Sediment samples were collected summer, 2015 and 2017, and late summer and early fall in 2016 to conduct plant ecotoxicological assays based on plant (Lepidium, Sinapis and Sorghum) growth inhibition and identify bacterial taxonomical diversity by the 16S rRNA gene sequences. Concentrations of metals such as lead (Pb) and mercury (Hg) (using XRF), and nutrients such as nitrate and phosphate (using HACH DR 2800TM spectrophotometer) were measured in sediment and water samples respectively. Analyses of response patterns revealed that plant and bacterial bioindicators were highly responsive to variation in the concentrations of these pollutants. Hence, this opens up the scope of using these bioindicators for ecological risk assessment in constructed freshwater wetland ecosystems within urbanizing watersheds.
Collapse
|
3
|
Martínez-Olivas MA, Jiménez-Bueno NG, Hernández-García JA, Fusaro C, Luna-Guido M, Navarro-Noya YE, Dendooven L. Bacterial and archaeal spatial distribution and its environmental drivers in an extremely haloalkaline soil at the landscape scale. PeerJ 2019; 7:e6127. [PMID: 31249729 PMCID: PMC6587938 DOI: 10.7717/peerj.6127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/17/2018] [Indexed: 11/20/2022] Open
Abstract
Background A great number of studies have shown that the distribution of microorganisms in the soil is not random, but that their abundance changes along environmental gradients (spatial patterns). The present study examined the spatial variability of the physicochemical characteristics of an extreme alkaline saline soil and how they controlled the archaeal and bacterial communities so as to determine the main spatial community drivers. Methods The archaeal and bacterial community structure, and soil characteristics were determined at 13 points along a 211 m transect in the former lake Texcoco. Geostatistical techniques were used to describe spatial patterns of the microbial community and soil characteristics and determine soil properties that defined the prokaryotic community structure. Results A high variability in electrolytic conductivity (EC) and water content (WC) was found. Euryarchaeota dominated Archaea, except when the EC was low. Proteobacteria, Bacteroidetes and Actinobacteria were the dominant bacterial phyla independent of large variations in certain soil characteristics. Multivariate analysis showed that soil WC affected the archaeal community structure and a geostatistical analysis found that variation in the relative abundance of Euryarchaeota was controlled by EC. The bacterial alpha diversity was less controlled by soil characteristics at the scale of this study than the archaeal alpha diversity. Discussion Results indicated that WC and EC played a major role in driving the microbial communities distribution and scale and sampling strategies were important to define spatial patterns.
Collapse
Affiliation(s)
| | | | - Juan Alfredo Hernández-García
- Laboratory of Biological Variation and Evolution, Department of Zoology, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Carmine Fusaro
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Tlaxcala, Mexico
| | | | | | - Luc Dendooven
- Laboratory of Soil Ecology, Cinvestav, Mexico City, Mexico
| |
Collapse
|
4
|
Zhang Y, Carvalho PN, Lv T, Arias C, Brix H, Chen Z. Microbial density and diversity in constructed wetland systems and the relation to pollutant removal efficiency. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:679-686. [PMID: 26877053 DOI: 10.2166/wst.2015.542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microbes are believed to be at the core of the wastewater treatment processes in constructed wetlands (CWs). The aim of this study was to assess the microbial biomass carbon (MBC) and Shannon's diversity index (SDI) in the substrate of CWs planted with Phragmites australis, Hymenocallis littoralis, Canna indica and Cyperus flabelliformis, and to relate MBC and SDI to the pollutant removal in the systems. Significant higher MBC was observed in CWs with H. littoralis and C. indica than in CWs with P. australis, and the MBC differed with season and substrate depth. The microbial community in the wetlands included four phyla: Cyanobacteria, Proteobacteria, Chloroflexi, and Acidobacteria, with a more diverse community structure in wetlands with C. flabelliformis. The MBC in the substrate and the SDI of the 15-20 cm depth correlated with the removal of biochemical oxygen demand, NH4-N and NO3-N. Our results indicate that substrate SDI and MBC can both be regarded as bioindicators of the pollutant removal ability in CWs.
Collapse
Affiliation(s)
- Yang Zhang
- College of Life Science, South China Normal University, Guangzhou 510631, China E-mail: ; Department of Bioscience, Aarhus University, Aarhus C8000, Denmark
| | - Pedro N Carvalho
- Department of Bioscience, Aarhus University, Aarhus C8000, Denmark
| | - Tao Lv
- Department of Bioscience, Aarhus University, Aarhus C8000, Denmark
| | - Carlos Arias
- Department of Bioscience, Aarhus University, Aarhus C8000, Denmark
| | - Hans Brix
- Department of Bioscience, Aarhus University, Aarhus C8000, Denmark
| | - Zhanghe Chen
- College of Life Science, South China Normal University, Guangzhou 510631, China E-mail:
| |
Collapse
|
5
|
Arroyo P, Sáenz de Miera LE, Ansola G. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 506-507:380-90. [PMID: 25460973 DOI: 10.1016/j.scitotenv.2014.11.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/24/2014] [Accepted: 11/11/2014] [Indexed: 05/20/2023]
Abstract
Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics.
Collapse
Affiliation(s)
- Paula Arroyo
- Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Calle La Serna, no. 56, CP 24071, León, Spain.
| | - Luis E Sáenz de Miera
- Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n, CP 24071, León, Spain.
| | - Gemma Ansola
- Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana s/n, CP 24071, León, Spain.
| |
Collapse
|
6
|
Khodakova AS, Smith RJ, Burgoyne L, Abarno D, Linacre A. Random whole metagenomic sequencing for forensic discrimination of soils. PLoS One 2014; 9:e104996. [PMID: 25111003 PMCID: PMC4128759 DOI: 10.1371/journal.pone.0104996] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022] Open
Abstract
Here we assess the ability of random whole metagenomic sequencing approaches to discriminate between similar soils from two geographically distinct urban sites for application in forensic science. Repeat samples from two parklands in residential areas separated by approximately 3 km were collected and the DNA was extracted. Shotgun, whole genome amplification (WGA) and single arbitrarily primed DNA amplification (AP-PCR) based sequencing techniques were then used to generate soil metagenomic profiles. Full and subsampled metagenomic datasets were then annotated against M5NR/M5RNA (taxonomic classification) and SEED Subsystems (metabolic classification) databases. Further comparative analyses were performed using a number of statistical tools including: hierarchical agglomerative clustering (CLUSTER); similarity profile analysis (SIMPROF); non-metric multidimensional scaling (NMDS); and canonical analysis of principal coordinates (CAP) at all major levels of taxonomic and metabolic classification. Our data showed that shotgun and WGA-based approaches generated highly similar metagenomic profiles for the soil samples such that the soil samples could not be distinguished accurately. An AP-PCR based approach was shown to be successful at obtaining reproducible site-specific metagenomic DNA profiles, which in turn were employed for successful discrimination of visually similar soil samples collected from two different locations.
Collapse
Affiliation(s)
| | - Renee J. Smith
- School of Biological Sciences, Flinders University, Adelaide, Australia
| | - Leigh Burgoyne
- School of Biological Sciences, Flinders University, Adelaide, Australia
| | - Damien Abarno
- School of Biological Sciences, Flinders University, Adelaide, Australia
- Forensic Science South Australia, Adelaide, Australia
| | - Adrian Linacre
- School of Biological Sciences, Flinders University, Adelaide, Australia
| |
Collapse
|
7
|
刘 建. The Application of High-Throughput Sequencing Technologies in the Research of Wetland Microbiology. INTERNATIONAL JOURNAL OF ECOLOGY 2014. [DOI: 10.12677/ije.2014.34009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Yu HX, Wang CY, Tang M. Fungal and bacterial communities in the rhizosphere of Pinus tabulaeformis related to the restoration of plantations and natural secondary forests in the Loess Plateau, northwest China. ScientificWorldJournal 2013; 2013:606480. [PMID: 24459438 PMCID: PMC3886228 DOI: 10.1155/2013/606480] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/19/2013] [Indexed: 12/02/2022] Open
Abstract
Chinese pine (Pinus tabulaeformis Carr.) is widely planted for restoration in destroyed ecosystems of the Loess Plateau in China. Although soil microbial communities are important subsurface components of the terrestrial ecosystems, little is known about fungal and bacterial communities in the rhizosphere of planted and natural P. tabulaeformis forests in the region. In this study, fungal and bacterial communities in the rhizosphere of P. tabulaeformis were analyzed by nested PCR-DGGE (denaturing gradient gel electrophoresis). Diversity analysis revealed that the values of the Shannon-Wiener index (H) and the Simpson index (D) of fungal communities were higher in natural secondary forests than in plantations except for the 3-year-old site. Moreover, the values of species richness, H, and D of the bacterial communities were also higher in the former. Totally, 18 fungal and 19 bacterial DGGE band types were successfully retrieved and sequenced. The dominant fungi in the rhizosphere of P. tabulaeformis belonged to the phylum of Basidiomycota, while the dominant bacteria belonged to the phylum of Proteobacteria. Principal component analysis indicated that fungal and bacterial species were more unitary in plantations than in natural secondary forests, and the majority of them were more likely to appear in the latter. Correlation analysis showed no significant correlation between the fungal and bacterial community diversities.
Collapse
Affiliation(s)
- Hong-Xia Yu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chun-Yan Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|