1
|
Xing X, Hong J, Alastruey J, Long X, Liu H, Dong WF. Robust arterial compliance estimation with Katz's fractal dimension of photoplethysmography. Front Physiol 2024; 15:1398904. [PMID: 38915780 PMCID: PMC11194390 DOI: 10.3389/fphys.2024.1398904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Arterial compliance (AC) plays a crucial role in vascular aging and cardiovascular disease. The ability to continuously estimate aortic AC or its surrogate, pulse pressure (PP), through wearable devices is highly desirable, given its strong association with daily activities. While the single-site photoplethysmography (PPG)-derived arterial stiffness indices show reasonable correlations with AC, they are susceptible to noise interference, limiting their practical use. To overcome this challenge, our study introduces a noise-resistant indicator of AC: Katz's fractal dimension (KFD) of PPG signals. We showed that KFD integrated the signal complexity arising from compliance changes across a cardiac cycle and vascular structural complexity, thereby decreasing its dependence on individual characteristic points. To assess its capability in measuring AC, we conducted a comprehensive evaluation using both in silico studies with 4374 virtual human data and real-world measurements. In the virtual human studies, KFD demonstrated a strong correlation with AC (r = 0.75), which only experienced a slight decrease to 0.66 at a signal-to-noise ratio of 15dB, surpassing the best PPG-morphology-derived AC measure (r = 0.41) under the same noise condition. In addition, we observed that KFD's sensitivity to AC varied based on the individual's hemodynamic status, which may further enhance the accuracy of AC estimations. These in silico findings were supported by real-world measurements encompassing diverse health conditions. In conclusion, our study suggests that PPG-derived KFD has the potential to continuously and reliably monitor arterial compliance, enabling unobtrusive and wearable assessment of cardiovascular health.
Collapse
Affiliation(s)
- Xiaoman Xing
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jingyuan Hong
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Jordi Alastruey
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Xi Long
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Haipeng Liu
- Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Wen-Fei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
2
|
Li MM, Pan JX, Wang JH, Hu ZL, Zhao J, Wei HC. Analysis of cardiovascular function in diabetic patients using EEMD-ICA fusion multi-scale percussion entropy. Technol Health Care 2024; 32:809-821. [PMID: 37458054 DOI: 10.3233/thc-230243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND Diabetes is a chronic disease that can lead to a variety of complications and even cause death. The signal characteristics of the photoplethysmography signals (PPG) and electrocardiogram signals (ECG) can reflect the autonomic and vascular aspects of the effects of diabetes on the body. OBJECTIVE Based on the complex mechanism of interaction between PPG and ECG, a set of ensemble empirical mode decomposition-independent component analysis (EEMD-ICA) fusion multi-scale percussion entropy index (MSPEI) method was proposed to analyze cardiovascular function in diabetic patients. METHODS Firstly, the original signal was decomposed into multiple Intrinsic Mode Function (IMFs) by ensemble empirical mode decomposition EEMD, principal components of IMF were extracted by independent component analysis (ICA), then the extracted principal components were reconstructed to eliminate the complex high and low frequency noise of physiological signals. In addition, the MSPEI was calculated for the ECG R-R interval and PPG amplitude sequence.(RRI and Amp) The results showed that, compared with EEMD method, the SNR of EEMD-ICA method increases from 2.1551 to 11.3642, and the root mean square error (RMSE) decreases from 0.0556 to 0.0067. This algorithm can improve the performance of denoising and retain more feature information. The large and small scale entropy of MSPEI (RRI,Amp) was significantly different between healthy and diabetic patients (p< 0.01). RESULTS Compared with arteriosclerosis index (AI) and multi-scale cross-approximate entropy (MCAE): MSPEISS (RRI,Amp) indicated that diabetes can affect the activity of human autonomic nervous system, while MSPEILS (RRI,Amp) indicated that diabetes can cause or worsen arteriosclerosis. CONCLUSION Multi-scale Percussion Entropy algorithm has more advantages in analyzing the influence of diabetes on human cardiovascular and autonomic nervous function.
Collapse
Affiliation(s)
- Miao-Miao Li
- School of Electrical and Information Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Jian-Xia Pan
- School of Electrical and Information Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Jin-Hang Wang
- School of Electrical and Information Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Zi-Lei Hu
- School of Electrical and Information Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Jing Zhao
- School of Information Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Hai-Cheng Wei
- School of Electrical and Information Engineering, North Minzu University, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Bogusz-Górna K, Polańska A, Dańczak-Pazdrowska A, Żaba R, Sumińska M, Fichna P, Kędzia A. Non-invasive detection of early microvascular changes in juveniles with type 1 diabetes. Cardiovasc Diabetol 2023; 22:285. [PMID: 37865774 PMCID: PMC10590527 DOI: 10.1186/s12933-023-02031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
AIMS/HYPOTHESIS The study aimed to assess the usefulness of capillaroscopy and photoplethysmography in the search for early vascular anomalies in children with type 1 diabetes. METHODS One hundred sixty children and adolescents aged 6-18, 125 patients with type 1 diabetes, and 35 healthy volunteers were enrolled in the study. We performed a detailed clinical evaluation, anthropometric measurements, nailfold capillaroscopy, and photoplethysmography. RESULTS Patients with diabetes had more often abnormal morphology in capillaroscopy (68.60%, p = 0.019), enlarged capillaries (32.6%, p = 0.006), and more often more over five meandering capillaries (20.90%, p = 0.026) compared to healthy controls. Meandering capillaries correlated with higher parameters of nutritional status. In a photoplethysmography, patients with diagnosed neuropathy had a higher percentage of flow disturbance curves (p < 0.001) with a reduced frequency of normal curves (p = 0.050). CONCLUSIONS Capillaroscopic and photoplethysmographic examinations are non-invasive, painless, fast, and inexpensive. They are devoid of side effects, and there are no limitations in the frequency of their use and repetition. The usefulness of capillaroscopy and photoplethysmography in the study of microcirculation in diabetic patients indicates the vast application possibilities of these methods in clinical practice.
Collapse
Affiliation(s)
- Klaudia Bogusz-Górna
- Department of Pediatric Diabetes, Auxology, and Obesity, Poznan University of Medical Sciences, Poznan, Poland.
| | - Adriana Polańska
- Department of Dermatology and Venereology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Ryszard Żaba
- Department of Dermatology and Venereology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Sumińska
- Department of Pediatric Diabetes, Auxology, and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Fichna
- Department of Pediatric Diabetes, Auxology, and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Kędzia
- Department of Pediatric Diabetes, Auxology, and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
4
|
Ovadia-Blechman Z, Hauptman Y, Rabin N, Wiezman G, Hoffer O, Gertz SD, Gavish B, Gavish L. Morphological features of the photoplethysmographic signal: a new approach to characterize the microcirculatory response to photobiomodulation. Front Physiol 2023; 14:1175470. [PMID: 37817983 PMCID: PMC10561251 DOI: 10.3389/fphys.2023.1175470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction and Objectives: Advanced analysis of the morphological features of the photoplethysmographic (PPG) waveform may provide greater understanding of mechanisms of action of photobiomodulation (PBM). Photobiomodulation is a non-ionizing, red to near-infrared irradiation shown to induce peripheral vasodilatation, promote wound healing, and reduce pain. Using laser Doppler flowmetry combined with thermal imaging we found previously in a clinical study that PBM stimulates microcirculatory blood flow and that baseline palm skin temperature determines, at least in part, why some individuals respond favorably to PBM while others do not. "Responders" (n = 12) had a skin temperature range of 33°C-37.5°C, while "non-responders" (n = 8) had "cold" or "hot" skin temperature (<33°C or >37.5°C respectively). The continuous PPG signals recorded from the index fingers of both hands in the original clinical study were subjected to advanced post-acquisitional analysis in the current study, aiming to identify morphological features that may improve the accuracy of discrimination between potential responders and non-responders to PBM. Methods: The PPG signals were detrended by subtracting the lower envelope from the raw signal. The Root Mean Square (RMS) and Entropy features were extracted as were two additional morphological features -- Smoothness and number of local extrema per PPG beat (#Extrema). These describe the signal jaggedness and were developed specifically for this study. The Wilcoxon test was used for paired comparisons. Correlations were determined by the Spearman correlation test (rs). Results: The PPG waveforms of responders to PBM had increased amplitude and decreased jaggedness (Baseline vs. 10' post-irradiation: Entropy, 5.0 ± 1.3 vs. 3.9 ± 1.1, p = 0.012; #Extrema, 4.0 ± 1.1 vs. 3.0 ± 1.6, p = 0.009; RMS, 1.6 ± 0.9 vs. 2.3 ± 1.2, p = 0.004; Smoothness, 0.10 ± 0.05 vs. 0.19 ± 0.16, p = 0.016). In addition, unilateral irradiation resulted in a bilateral response, although the response of the contralateral, non-irradiated hand was shorter in duration and lower in magnitude. Although subjects with 'cold,' or 'hot,' baseline skin temperature appeared to have morphologically distinct PPG waveforms, representing vasoconstriction and vasodilatation, these were not affected by PBM irradiation. Conclusion: This pilot study indicates that post-acquisitional analysis of morphological features of the PPG waveform provides new measures for the exploration of microcirculation responsiveness to PBM.
Collapse
Affiliation(s)
- Zehava Ovadia-Blechman
- School of Medical Engineering, Afeka Tel‐Aviv Academic College of Engineering, Tel Aviv, Israel
| | - Yermiyahu Hauptman
- ACLP—The Center for Language Processing, Afeka Tel‐Aviv Academic College of Engineering, Tel Aviv, Israel
| | - Neta Rabin
- Department of Industrial Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel‐Aviv University, Tel Aviv, Israel
| | - Gal Wiezman
- School of Medical Engineering, Afeka Tel‐Aviv Academic College of Engineering, Tel Aviv, Israel
| | - Oshrit Hoffer
- School of Electrical Engineering, Afeka Tel‐Aviv Academic College of Engineering, Tel Aviv, Israel
| | - S. David Gertz
- Faculty of Medicine, Institute for Research in Military Medicine (IRMM), The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, Israel
- The Saul and Joyce Brandman Hub for Cardiovascular Research and the Department of Medical Neurobiology, Faculty of Medicine, Institute for Medical Research (IMRIC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Lilach Gavish
- Faculty of Medicine, Institute for Research in Military Medicine (IRMM), The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, Israel
- The Saul and Joyce Brandman Hub for Cardiovascular Research and the Department of Medical Neurobiology, Faculty of Medicine, Institute for Medical Research (IMRIC), The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
López-Galán E, Montoya-Pedrón A, Barrio-Deler R, Sánchez-Hechavarría ME, Muñoz-Bustos ME, Muñoz-Bustos GA. Reactive Hyperemia and Cardiovascular Autonomic Neuropathy in Type 2 Diabetic Patients: A Systematic Review of Randomized and Nonrandomized Clinical Trials. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040770. [PMID: 37109728 PMCID: PMC10141598 DOI: 10.3390/medicina59040770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Objective: This work aimed to determine the relationship between the autonomic nervous system and reactive hyperemia (RH) in type 2 diabetes patients with and without cardiovascular autonomic neuropathy (CAN). Methodology: A systematic review of randomized and nonrandomized clinical studies characterizing reactive hyperemia and autonomic activity in type 2 diabetes patients with and without CAN was performed. Results: Five articles showed differences in RH between healthy subjects and diabetic patients with and/or without neuropathy, while one study did not show such differences between healthy subjects and diabetic patients, but patients with diabetic ulcers had lower RH index values compared to healthy controls. Another study found no significant difference in blood flow after a muscle strain that induced reactive hyperemia between normal subjects and non-smoking diabetic patients. Four studies measured reactive hyperemia using peripheral arterial tonometry (PAT); only two found a significantly lower endothelial-function-derived measure of PAT in diabetic patients than in those without CAN. Four studies measured reactive hyperemia using flow-mediated dilation (FMD), but no significant differences were reported between diabetic patients with and without CAN. Two studies measured RH using laser Doppler techniques; one of them found significant differences in the blood flow of calf skin after stretching between diabetic non-smokers and smokers. The diabetic smokers had neurogenic activity at baseline that was significantly lower than that of the normal subjects. The greatest evidence revealed that the differences in RH between diabetic patients with and without CAN may depend on both the method used to measure hyperemia and that applied for the ANS examination as well as the type of autonomic deficit present in the patients. Conclusions: In diabetic patients, there is a deterioration in the vasodilator response to the reactive hyperemia maneuver compared to healthy subjects, which depends in part on endothelial and autonomic dysfunction. Blood flow alterations in diabetic patients during RH are mainly mediated by sympathetic dysfunction. The greatest evidence suggests a relationship between ANS and RH; however, there are no significant differences in RH between diabetic patients with and without CAN, as measured using FMD. When the flow of the microvascular territory is measured, the differences between diabetics with and without CAN become evident. Therefore, RH measured using PAT may reflect diabetic neuropathic changes with greater sensitivity compared to FMD.
Collapse
Affiliation(s)
- Erislandis López-Galán
- Facultad de Medicina 2, Universidad de Ciencias Médicas de Santiago de Cuba, Santiago de Cuba 90100, Cuba
| | - Arquímedes Montoya-Pedrón
- Departamento de Neurofisiología Clínica, Hospital Clínico Quirúrgico Juan Brunos Zayas Alfonso, Universidad de Ciencias Médicas de Santiago de Cuba, Santiago de Cuba 90100, Cuba
| | - Rafael Barrio-Deler
- Hospital Infantil Norte Juan de la Cruz Martínez Maceira, Universidad de Ciencias Médicas de Santiago de Cuba, Santiago de Cuba 90100, Cuba
| | - Miguel Enrique Sánchez-Hechavarría
- Departamento de Ciencias Clínicas y Preclínicas, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
- Núcleo Científico de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Adventista de Chile, Chillán 3780000, Chile
| | - Mario Eugenio Muñoz-Bustos
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Concepción, Concepción 4030000, Chile
| | - Gustavo Alejandro Muñoz-Bustos
- Escuela de Kinesiología, Facultad de Salud y Ciencias Sociales, Campus El Boldal, Sede Concepción, Universidad de las Américas, Concepcion 4030000, Chile
| |
Collapse
|
6
|
Zanelli S, Ammi M, Hallab M, El Yacoubi MA. Diabetes Detection and Management through Photoplethysmographic and Electrocardiographic Signals Analysis: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:4890. [PMID: 35808386 PMCID: PMC9269150 DOI: 10.3390/s22134890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: Diabetes mellitus (DM) is a chronic, metabolic disease characterized by elevated levels of blood glucose. Recently, some studies approached the diabetes care domain through the analysis of the modifications of cardiovascular system parameters. In fact, cardiovascular diseases are the first leading cause of death in diabetic subjects. Thanks to their cost effectiveness and their ease of use, electrocardiographic (ECG) and photoplethysmographic (PPG) signals have recently been used in diabetes detection, blood glucose estimation and diabetes-related complication detection. This review's aim is to provide a detailed overview of all the published methods, from the traditional (non machine learning) to the deep learning approaches, to detect and manage diabetes using PPG and ECG signals. This review will allow researchers to compare and understand the differences, in terms of results, amount of data and complexity that each type of approach provides and requires. (2) Method: We performed a systematic review based on articles that focus on the use of ECG and PPG signals in diabetes care. The search was focused on keywords related to the topic, such as "Diabetes", "ECG", "PPG", "Machine Learning", etc. This was performed using databases, such as PubMed, Google Scholar, Semantic Scholar and IEEE Xplore. This review's aim is to provide a detailed overview of all the published methods, from the traditional (non machine learning) to the deep learning approaches, to detect and manage diabetes using PPG and ECG signals. This review will allow researchers to compare and understand the differences, in terms of results, amount of data and complexity that each type of approach provides and requires. (3) Results: A total of 78 studies were included. The majority of the selected studies focused on blood glucose estimation (41) and diabetes detection (31). Only 7 studies focused on diabetes complications detection. We present these studies by approach: traditional, machine learning and deep learning approaches. (4) Conclusions: ECG and PPG analysis in diabetes care showed to be very promising. Clinical validation and data processing standardization need to be improved in order to employ these techniques in a clinical environment.
Collapse
Affiliation(s)
- Serena Zanelli
- University of Paris 8, LAGA, CNRS, Institut Galilée, 93200 Saint Denis, France;
- SAMOVAR Telecom SudParis, CNRS, Institut Polytechnique de Paris, 91764 Paris, France;
| | - Mehdi Ammi
- University of Paris 8, LAGA, CNRS, Institut Galilée, 93200 Saint Denis, France;
| | | | - Mounim A. El Yacoubi
- SAMOVAR Telecom SudParis, CNRS, Institut Polytechnique de Paris, 91764 Paris, France;
| |
Collapse
|
7
|
Almarshad MA, Islam MS, Al-Ahmadi S, BaHammam AS. Diagnostic Features and Potential Applications of PPG Signal in Healthcare: A Systematic Review. Healthcare (Basel) 2022; 10:547. [PMID: 35327025 PMCID: PMC8950880 DOI: 10.3390/healthcare10030547] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Recent research indicates that Photoplethysmography (PPG) signals carry more information than oxygen saturation level (SpO2) and can be utilized for affordable, fast, and noninvasive healthcare applications. All these encourage the researchers to estimate its feasibility as an alternative to many expansive, time-wasting, and invasive methods. This systematic review discusses the current literature on diagnostic features of PPG signal and their applications that might present a potential venue to be adapted into many health and fitness aspects of human life. The research methodology is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines 2020. To this aim, papers from 1981 to date are reviewed and categorized in terms of the healthcare application domain. Along with consolidated research areas, recent topics that are growing in popularity are also discovered. We also highlight the potential impact of using PPG signals on an individual's quality of life and public health. The state-of-the-art studies suggest that in the years to come PPG wearables will become pervasive in many fields of medical practices, and the main domains include cardiology, respiratory, neurology, and fitness. Main operation challenges, including performance and robustness obstacles, are identified.
Collapse
Affiliation(s)
- Malak Abdullah Almarshad
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (M.S.I.); (S.A.-A.)
- Computer Science Department, College of Computer and Information Sciences, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Md Saiful Islam
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (M.S.I.); (S.A.-A.)
| | - Saad Al-Ahmadi
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (M.S.I.); (S.A.-A.)
| | - Ahmed S. BaHammam
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11324, Saudi Arabia;
| |
Collapse
|
8
|
Xiao M, Lu C, Ta N, Wei H, Yang C, Wu H. Toe PPG sample extension for supervised machine learning approaches to simultaneously predict type 2 diabetes and peripheral neuropathy. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
A First Step towards a Comprehensive Approach to Harmonic Analysis of Synchronous Peripheral Volume Pulses: A Proof-of-Concept Study. J Pers Med 2021; 11:jpm11121263. [PMID: 34945735 PMCID: PMC8707287 DOI: 10.3390/jpm11121263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022] Open
Abstract
The harmonic analysis (HA) of arterial radial pulses in humans has been widely investigated in recent years for clinical applications of traditional Chinese medicine. This study aimed at establishing the validity of carrying out HA on synchronous peripheral volume pulses for predicting diabetes-induced subtle changes in heart energy. In this study, 141 subjects (Group 1: 63 healthy elderly subjects; Group 2: 78 diabetic subjects) were enrolled at the same hospital. After routine blood sampling, all synchronous electrocardiogram (ECG) and photoplethysmography (PPG) measurements (i.e., at the six locations) were acquired in the morning. HA of synchronous peripheral volume pulses and radial pulse waves was performed and analyzed after a short period of an ensemble averaging process based on the R-wave peak location. This study utilized HA for the peripheral volume pulses and found that the averaged total pulse energy (i.e., the C0 of the DTFS) was identical in the same subject. A logistic regression model with C0 and a waist circumference variable showed a graded association with the risk of developing type 2 diabetes. The adjusted odds ratio for C0 and the waist circumference were 0.986 (95% confidence interval: 0.977, 0.994) and 1.130 (95% confidence interval: 1.045, 1.222), respectively. C0 also showed significant negative correlations with risk factors for type 2 diabetes mellitus, including glycosylated hemoglobin and fasting plasma glucose (r = −0.438, p < 0.001; r = −0.358, p < 0.001, respectively). This study established a new application of harmonic analysis in synchronous peripheral volume pulses for clinical applications. The findings showed that the C0 could be used as a prognostic indicator of a protective factor for predicting type 2 diabetes.
Collapse
|
10
|
Xiao MX, Lu CH, Ta N, Wei HC, Haryadi B, Wu HT. Machine learning prediction of future peripheral neuropathy in type 2 diabetics with percussion entropy and body mass indices. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Prognosis of Diabetic Peripheral Neuropathy via Decomposed Digital Volume Pulse from the Fingertip. ENTROPY 2020; 22:e22070754. [PMID: 33286526 PMCID: PMC7517300 DOI: 10.3390/e22070754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a very common neurological disorder in diabetic patients. This study presents a new percussion-based index for predicting DPN by decomposing digital volume pulse (DVP) signals from the fingertip. In this study, 130 subjects (50 individuals 44 to 89 years of age without diabetes and 80 patients 37 to 86 years of age with type 2 diabetes) were enrolled. After baseline measurement and blood tests, 25 diabetic patients developed DPN within the following five years. After removing high-frequency noise in the original DVP signals, the decomposed DVP signals were used for percussion entropy index (PEIDVP) computation. Effects of risk factors on the incidence of DPN in diabetic patients within five years of follow-up were tested using binary logistic regression analysis, controlling for age, waist circumference, low-density lipoprotein cholesterol, and the new index. Multivariate analysis showed that patients who did not develop DPN in the five-year period had higher PEIDVP values than those with DPN, as determined by logistic regression model (PEIDVP: odds ratio 0.913, 95% CI 0.850 to 0.980). This study shows that PEIDVP can be a major protective factor in relation to the studied binary outcome (i.e., DPN or not in diabetic patients five years after baseline measurement).
Collapse
|
12
|
Georgieva-Tsaneva G, Gospodinova E, Gospodinov M, Cheshmedzhiev K. Cardio-Diagnostic Assisting Computer System. Diagnostics (Basel) 2020; 10:diagnostics10050322. [PMID: 32438753 PMCID: PMC7277997 DOI: 10.3390/diagnostics10050322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
The mathematical analysis and the assessment of heart rate variability (HRV) based on computer systems can assist the diagnostic process with determining the cardiac status of patients. The new cardio-diagnostic assisting computer system created uses the classic Time-Domain, Frequency-Domain, and Time-Frequency analysis indices, as well as the nonlinear methods (Poincaré plot, Recurrence plot, Hurst R/S method, Detrended Fluctuation Analysis (DFA), Multi-Fractal DFA, Approximate Entropy and Sample Entropy). To test the feasibility of the software developed, 24-hour Holter recordings of four groups of people were analysed: healthy subjects and patients with arrhythmia, heart failure and syncope. Time-Domain (SDNN < 50 ms, SDANN < 100 ms, RMSSD < 17 ms) and Frequency-Domain (the spectrum of HRV in the LF < 550 ms2, and HF < 540 ms2) parameter values decreased in the cardiovascular disease groups compared to the control group as a result of lower HRV due to decreased parasympathetic and increased sympathetic activity. The results of the nonlinear analysis showed low values of (SD1 < 56 ms, SD2 < 110 ms) at Poincaré plot (Alpha < 90 ms) at DFA in patients with diseases. Significantly reducing these parameters are markers of cardiac dysfunction. The examined groups of patients showed an increase in the parameters (DET% > 95, REC% > 38, ENTR > 3.2) at the Recurrence plot. This is evidence of a pathological change in the regulation of heart rhythm. The system created can be useful in making the diagnosis by the cardiologist and in bringing greater accuracy and objectivity to the treatment.
Collapse
|