1
|
Lao HD, Liu D, Cheng B, Liu SL, Shuang F, Li H, Li L, Zhou JJ. Personalized digital simulation‑assisted acetabular component implantation in revision hip arthroplasty. Exp Ther Med 2024; 27:180. [PMID: 38515645 PMCID: PMC10952346 DOI: 10.3892/etm.2024.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024] Open
Abstract
The number of artificial total hip revision arthroplasties is increasing yearly in China, and >50% of these cases have acetabular defects. Accurately locating and quantifying the bone defect is one of the current challenges of this surgery. Thus, the objective of the present study was to simulate acetabular implantation with the aid of Mimics 17.0 software (Materialise NV) in patients with loosened acetabular prosthesis, to evaluate the 'ideal acetabular center' and the 'actual acetabular center' to guide the choice of prosthesis and surgical method. From January 2017 to June 2021, the present study included 10 hips from 10 patients [seven men (seven hips) and three women (three hips)]. In all patients, the Mimics software was applied to simulate the dislocation of the femoral prosthesis and acetabular prosthesis implantation before surgery; calculate the height difference between the 'ideal acetabular center' and the 'actual acetabular center' to assess the bone defect; confirm the size of the acetabular prosthesis, abduction angle, anteversion angle and bone coverage of the acetabular cup; and measure the intraoperative bleeding and postoperative follow-up Harris score of the hip joint. After statistical analysis, the present study revealed that digital simulation assistance could improve the accuracy of hip revision acetabular prosthesis implantation, reduce postoperative shortening of the affected limb, especially for surgeons with relatively little experience in hip revision surgery, and greatly reduce the occurrence of complications such as hip dislocation because of poor postoperative prosthesis position.
Collapse
Affiliation(s)
- Hong-Da Lao
- Department of Orthopedics, The 908th Hospital of The Joint Logistics Support Force (Great Wall Hospital Affiliated to Nanchang University), Nanchang, Jiangxi 335001, P.R. China
| | - Da Liu
- Department of Orthopedics, General Hospital of Western Theater Command, Chengdu, Sichuan 610038, P.R. China
| | - Bin Cheng
- Second Department of Orthopedics, The 92962 Military Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Shu-Ling Liu
- Jiangxi Institute of Scientific and Technical Information, Nanchang, Jiangxi 335001, P.R. China
| | - Feng Shuang
- Department of Orthopedics, The 908th Hospital of The Joint Logistics Support Force (Great Wall Hospital Affiliated to Nanchang University), Nanchang, Jiangxi 335001, P.R. China
| | - Hao Li
- Department of Orthopedics, The 908th Hospital of The Joint Logistics Support Force (Great Wall Hospital Affiliated to Nanchang University), Nanchang, Jiangxi 335001, P.R. China
| | - Lei Li
- Department of Orthopedics, The 908th Hospital of The Joint Logistics Support Force (Great Wall Hospital Affiliated to Nanchang University), Nanchang, Jiangxi 335001, P.R. China
| | - Jiang-Jun Zhou
- Department of Orthopedics, The 908th Hospital of The Joint Logistics Support Force (Great Wall Hospital Affiliated to Nanchang University), Nanchang, Jiangxi 335001, P.R. China
| |
Collapse
|
2
|
Piuzzi NS, Klika AK, Lu Q, Higuera-Rueda CA, Stappenbeck T, Visperas A. Periprosthetic joint infection and immunity: Current understanding of host-microbe interplay. J Orthop Res 2024; 42:7-20. [PMID: 37874328 DOI: 10.1002/jor.25723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Periprosthetic joint infection (PJI) is a major complication of total joint arthroplasty. Even with current treatments, failure rates are unacceptably high with a 5-year mortality rate of 26%. Majority of the literature in the field has focused on development of better biomarkers for diagnostics and treatment strategies including innovate antibiotic delivery systems, antibiofilm agents, and bacteriophages. Nevertheless, the role of the immune system, our first line of defense during PJI, is not well understood. Evidence of infection in PJI patients is found within circulation, synovial fluid, and tissue and include numerous cytokines, metabolites, antimicrobial peptides, and soluble receptors that are part of the PJI diagnosis workup. Macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs) are initially recruited into the joint by chemokines and cytokines produced by immune cells and bacteria and are activated by pathogen-associated molecular patterns. While these cells are efficient killers of planktonic bacteria by phagocytosis, opsonization, degranulation, and recruitment of adaptive immune cells, biofilm-associated bacteria are troublesome. Biofilm is not only a physical barrier for the immune system but also elicits effector functions. Additionally, bacteria have developed mechanisms to evade the immune system by inactivating effector molecules, promoting killing or anti-inflammatory effector cell phenotypes, and intracellular persistence and dissemination. Understanding these shortcomings and the mechanisms by which bacteria can subvert the immune system may open new approaches to better prepare our own immune system to combat PJI. Furthermore, preoperative immune system assessment and screening for dysregulation may aid in developing preventative interventions to decrease PJI incidence.
Collapse
Affiliation(s)
- Nicolas S Piuzzi
- Department of Orthopaedic Surgery, Cleveland Clinic Adult Reconstruction Research (CCARR), Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alison K Klika
- Department of Orthopaedic Surgery, Cleveland Clinic Adult Reconstruction Research (CCARR), Cleveland Clinic, Cleveland, Ohio, USA
| | - Qiuhe Lu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Anabelle Visperas
- Department of Orthopaedic Surgery, Cleveland Clinic Adult Reconstruction Research (CCARR), Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Hallam TM, Sharp SJ, Andreadi A, Kavanagh D. Complement factor I: Regulatory nexus, driver of immunopathology, and therapeutic. Immunobiology 2023; 228:152410. [PMID: 37478687 DOI: 10.1016/j.imbio.2023.152410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/23/2023]
Abstract
Complement factor I (FI) is the nexus for classical, lectin and alternative pathway complement regulation. FI is an 88 kDa plasma protein that circulates in an inactive configuration until it forms a trimolecular complex with its cofactor and substrate whereupon a structural reorganization allows the catalytic triad to cleave its substrates, C3b and C4b. In keeping with its role as the master complement regulatory enzyme, deficiency has been linked to immunopathology. In the setting of complete FI deficiency, a consumptive C3 deficiency results in recurrent infections with encapsulated microorganisms. Aseptic cerebral inflammation and vasculitic presentations are also less commonly observed. Heterozygous mutations in the factor I gene (CFI) have been demonstrated to be enriched in atypical haemolytic uraemic syndrome, albeit with a very low penetrance. Haploinsufficiency of CFI has also been associated with decreased retinal thickness and is a strong risk factor for the development of age-related macular degeneration. Supplementation of FI using plasma purified or recombinant protein has long been postulated, however, technical difficulties prevented progression into clinical trials. It is only using gene therapy that CFI supplementation has reached the clinic with GT005 in phase I/II clinical trials for geographic atrophy.
Collapse
Affiliation(s)
- T M Hallam
- Gyroscope Therapeutics Limited, A Novartis Company, Rolling Stock Yard, London N7 9AS, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK
| | - S J Sharp
- Gyroscope Therapeutics Limited, A Novartis Company, Rolling Stock Yard, London N7 9AS, UK
| | - A Andreadi
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK
| | - D Kavanagh
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK; NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
4
|
Fisher CR, Patel R. Profiling the Immune Response to Periprosthetic Joint Infection and Non-Infectious Arthroplasty Failure. Antibiotics (Basel) 2023; 12:296. [PMID: 36830206 PMCID: PMC9951934 DOI: 10.3390/antibiotics12020296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Arthroplasty failure is a major complication of joint replacement surgery. It can be caused by periprosthetic joint infection (PJI) or non-infectious etiologies, and often requires surgical intervention and (in select scenarios) resection and reimplantation of implanted devices. Fast and accurate diagnosis of PJI and non-infectious arthroplasty failure (NIAF) is critical to direct medical and surgical treatment; differentiation of PJI from NIAF may, however, be unclear in some cases. Traditional culture, nucleic acid amplification tests, metagenomic, and metatranscriptomic techniques for microbial detection have had success in differentiating the two entities, although microbiologically negative apparent PJI remains a challenge. Single host biomarkers or, alternatively, more advanced immune response profiling-based approaches may be applied to differentiate PJI from NIAF, overcoming limitations of microbial-based detection methods and possibly, especially with newer approaches, augmenting them. In this review, current approaches to arthroplasty failure diagnosis are briefly overviewed, followed by a review of host-based approaches for differentiation of PJI from NIAF, including exciting futuristic combinational multi-omics methodologies that may both detect pathogens and assess biological responses, illuminating causes of arthroplasty failure.
Collapse
Affiliation(s)
- Cody R. Fisher
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|