1
|
Zou J, Bai H, Zhang L, Shen Y, Yang C, Zhuang W, Hu J, Yao Y, Hu WW. Ion-sensitive field effect transistor biosensors for biomarker detection: current progress and challenges. J Mater Chem B 2024; 12:8523-8542. [PMID: 39082127 DOI: 10.1039/d4tb00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The ion-sensitive field effect transistor (ISFET) has emerged as a crucial sensor device, owing to its numerous benefits such as label-free operation, miniaturization, high sensitivity, and rapid response time. Currently, ISFET technology excels in detecting ions, nucleic acids, proteins, and cellular components, with widespread applications in early disease screening, condition monitoring, and drug analysis. Recent advancements in sensing techniques, coupled with breakthroughs in nanomaterials and microelectronics, have significantly improved sensor performance. These developments are steering ISFETs toward a promising future characterized by enhanced sensitivity, seamless integration, and multifaceted detection capabilities. This review explores the structure and operational principles of ISFETs, highlighting recent research in ISFET biosensors for biomarker detection. It also examines the limitations of these sensors, proposes potential solutions, and anticipates their future trajectory. This review aims to provide a valuable reference for advancing ISFETs in the field of biomarker measurement.
Collapse
Affiliation(s)
- Jie Zou
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Bai
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Limei Zhang
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Shen
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chengli Yang
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weihua Zhuang
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jie Hu
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongchao Yao
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenchuang Walter Hu
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
2
|
Dong T, Zhu W, Yang Z, Matos Pires NM, Lin Q, Jing W, Zhao L, Wei X, Jiang Z. Advances in heart failure monitoring: Biosensors targeting molecular markers in peripheral bio-fluids. Biosens Bioelectron 2024; 255:116090. [PMID: 38569250 DOI: 10.1016/j.bios.2024.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases (CVDs), especially chronic heart failure, threaten many patients' lives worldwide. Because of its slow course and complex causes, its clinical screening, diagnosis, and prognosis are essential challenges. Clinical biomarkers and biosensor technologies can rapidly screen and diagnose. Multiple types of biomarkers are employed for screening purposes, precise diagnosis, and treatment follow-up. This article provides an up-to-date overview of the biomarkers associated with the six main heart failure etiology pathways. Plasma natriuretic peptides (BNP and NT-proBNP) and cardiac troponins (cTnT, cTnl) are still analyzed as gold-standard markers for heart failure. Other complementary biomarkers include growth differentiation factor 15 (GDF-15), circulating Galactose Lectin 3 (Gal-3), soluble interleukin (sST2), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α). For these biomarkers, the electrochemical biosensors have exhibited sufficient sensitivity, detection limit, and specificity. This review systematically summarizes the latest molecular biomarkers and sensors for heart failure, which will provide comprehensive and cutting-edge authoritative scientific information for biomedical and electronic-sensing researchers in the field of heart failure, as well as patients. In addition, our proposed future outlook may provide new research ideas for researchers.
Collapse
Affiliation(s)
- Tao Dong
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, P.O. Box 235, Kongsberg, 3603, Norway
| | - Wangang Zhu
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Libo Zhao
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
3
|
Rammos A, Bechlioulis A, Kalogeras P, Watson CJ, Salvo P, Lomonaco T, Kardakari O, Tripoliti EE, Goletsis Y, Fotiadis DI, Katsouras CS, Michalis LK, Naka KK. The Potential Role of Salivary NT-proBNP in Heart Failure. Life (Basel) 2023; 13:1818. [PMID: 37763222 PMCID: PMC10532738 DOI: 10.3390/life13091818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Serum natriuretic peptides (NPs) have an established role in heart failure (HF) diagnosis. Saliva NT-proBNP that may be easily acquired has been studied little. METHODS Ninety-nine subjects were enrolled; thirty-six obese or hypertensive with dyspnoea but no echocardiographic HF findings or raised NPs served as controls, thirteen chronic HF (CHF) patients and fifty patients with acute decompensated HF (ADHF) requiring hospital admission. Electrocardiogram, echocardiogram, 6 min walking distance (6MWD), blood and saliva samples, were acquired in all participants. RESULTS Serum NT-proBNP ranged from 60-9000 pg/mL and saliva NT-proBNP from 0.64-93.32 pg/mL. Serum NT-proBNP was significantly higher in ADHF compared to CHF (p = 0.007) and in CHF compared to controls (p < 0.05). There was no significant difference in saliva values between ADHF and CHF, or between CHF and controls. Saliva and serum levels were positively associated only in ADHF patients (R = 0.352, p = 0.012). Serum NT-proBNP was positively associated with NYHA class (R = 0.506, p < 0.001) and inversely with 6MWD (R = -0.401, p = 0.004) in ADHF. Saliva NT-proBNP only correlated with age in ADHF patients. CONCLUSIONS In the current study, saliva NT-proBNP correlated with serum values in ADHF patients, but could not discriminate between HF and other causes of dyspnoea. Further research is needed to explore the value of saliva NT-proBNP.
Collapse
Affiliation(s)
- Aidonis Rammos
- 2nd Department of Cardiology, Faculty of Medicine, School of Health Sciences, University of Ioannina & University Hospital of Ioannina, 45110 Ioannina, Greece (P.K.); (O.K.)
| | - Aris Bechlioulis
- 2nd Department of Cardiology, Faculty of Medicine, School of Health Sciences, University of Ioannina & University Hospital of Ioannina, 45110 Ioannina, Greece (P.K.); (O.K.)
| | - Petros Kalogeras
- 2nd Department of Cardiology, Faculty of Medicine, School of Health Sciences, University of Ioannina & University Hospital of Ioannina, 45110 Ioannina, Greece (P.K.); (O.K.)
| | - Chris J. Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK;
- UCD Conway Institute, School of Medicine, University College Dublin, 4 Dublin, Ireland
| | - Pietro Salvo
- Institute of Clinical Physiology, Italian National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy;
| | - Olga Kardakari
- 2nd Department of Cardiology, Faculty of Medicine, School of Health Sciences, University of Ioannina & University Hospital of Ioannina, 45110 Ioannina, Greece (P.K.); (O.K.)
| | - Evanthia E. Tripoliti
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, FORTH, 45110 Ioannina, Greece (Y.G.); (D.I.F.)
| | - Yorgos Goletsis
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, FORTH, 45110 Ioannina, Greece (Y.G.); (D.I.F.)
- Department of Economics, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitris I. Fotiadis
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, FORTH, 45110 Ioannina, Greece (Y.G.); (D.I.F.)
- Department of Economics, University of Ioannina, 45110 Ioannina, Greece
- Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, 45110 Ioannina, Greece
| | - Christos S. Katsouras
- 2nd Department of Cardiology, Faculty of Medicine, School of Health Sciences, University of Ioannina & University Hospital of Ioannina, 45110 Ioannina, Greece (P.K.); (O.K.)
| | - Lampros K. Michalis
- 2nd Department of Cardiology, Faculty of Medicine, School of Health Sciences, University of Ioannina & University Hospital of Ioannina, 45110 Ioannina, Greece (P.K.); (O.K.)
| | - Katerina K. Naka
- 2nd Department of Cardiology, Faculty of Medicine, School of Health Sciences, University of Ioannina & University Hospital of Ioannina, 45110 Ioannina, Greece (P.K.); (O.K.)
| |
Collapse
|
4
|
Polonschii C, Potara M, Iancu M, David S, Banciu RM, Vasilescu A, Astilean S. Progress in the Optical Sensing of Cardiac Biomarkers. BIOSENSORS 2023; 13:632. [PMID: 37366997 PMCID: PMC10296523 DOI: 10.3390/bios13060632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Biomarkers play key roles in the diagnosis, risk assessment, treatment and supervision of cardiovascular diseases (CVD). Optical biosensors and assays are valuable analytical tools answering the need for fast and reliable measurements of biomarker levels. This review presents a survey of recent literature with a focus on the past 5 years. The data indicate continuing trends towards multiplexed, simpler, cheaper, faster and innovative sensing while newer tendencies concern minimizing the sample volume or using alternative sampling matrices such as saliva for less invasive assays. Utilizing the enzyme-mimicking activity of nanomaterials gained ground in comparison to their more traditional roles as signaling probes, immobilization supports for biomolecules and for signal amplification. The growing use of aptamers as replacements for antibodies prompted emerging applications of DNA amplification and editing techniques. Optical biosensors and assays were tested with larger sets of clinical samples and compared with the current standard methods. The ambitious goals on the horizon for CVD testing include the discovery and determination of relevant biomarkers with the help of artificial intelligence, more stable specific recognition elements for biomarkers and fast, cheap readers and disposable tests to facilitate rapid testing at home. As the field is progressing at an impressive pace, the opportunities for biosensors in the optical sensing of CVD biomarkers remain significant.
Collapse
Affiliation(s)
- Cristina Polonschii
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (S.A.)
| | - Madalina Iancu
- “Professor Dr. Agrippa Ionescu” Clinical Emergency Hospital, 7 Architect Ion Mincu Street, 011356 Bucharest, Romania;
| | - Sorin David
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
| | - Roberta Maria Banciu
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
- Faculty of Chemistry, University of Bucharest, 4-12 “Regina Elisabeta” Blvd., 030018 Bucharest, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (S.A.)
| |
Collapse
|
5
|
Ben Halima H, Bellagambi FG, Brunon F, Alcacer A, Pfeiffer N, Heuberger A, Hangouët M, Zine N, Bausells J, Errachid A. Immuno field-effect transistor (ImmunoFET) for detection of salivary cortisol using potentiometric and impedance spectroscopy for monitoring heart failure. Talanta 2023; 257:123802. [PMID: 36863297 DOI: 10.1016/j.talanta.2022.123802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
Cortisol, a steroid hormone mostly known as "the stress hormone," plays many essential functions in humans due its involvement in several metabolic pathways. It is well-known that cortisol dysregulation is implied in evolution and progression of several chronic pathologies, including cardiac diseases such as heart failure (HF). However, although several sensors have been proposed to date for the determination of cortisol, none of them has been designed for its determination in saliva in order to monitor HF progression. In this work, a silicon nitride based Immuno field-effect transistor (ImmunoFET) has been proposed to quantify salivary cortisol for HF monitoring. Sensitive biological element was represented by anti-cortisol antibody bound onto the ISFET gate via 11-triethoxysilyl undecanal (TESUD) by vapor-phase method. Potentiometric and electrochemical impedance spectroscopy (EIS) measurements were carried out for preliminary investigations on device responsiveness. Subsequently, a more sensitive detection was obtained using electrochemical EIS. The proposed device has proven to have a linear response (R2 always >0.99), to be sensitive (with a limit of detection, LoD, of 0.005 ± 0.002 ng/mL), selective in case of other HF biomarkers (e.g. N-terminal pro B-type natriuretic peptide (NT-proBNP), tumor necrosis factor-alpha (TNF-α), and interleukin 10 (IL-10)), and accurate in cortisol quantification in saliva sample by performing the standard addition method.
Collapse
Affiliation(s)
- Hamdi Ben Halima
- Institute of Analytical Sciences (ISA) - UMR 5280, Claude Bernard Lyon 1 University, 69100, Lyon, France
| | - Francesca G Bellagambi
- Institute of Analytical Sciences (ISA) - UMR 5280, Claude Bernard Lyon 1 University, 69100, Lyon, France.
| | - Fabien Brunon
- Institute of Analytical Sciences (ISA) - UMR 5280, Claude Bernard Lyon 1 University, 69100, Lyon, France
| | - Albert Alcacer
- Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Norman Pfeiffer
- Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits, 91058, Erlangen, Germany
| | - Albert Heuberger
- Information Technology (LIKE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Marie Hangouët
- Institute of Analytical Sciences (ISA) - UMR 5280, French National Center for Scientific Research (CNRS), 69100, Lyon, France
| | - Nadia Zine
- Institute of Analytical Sciences (ISA) - UMR 5280, Claude Bernard Lyon 1 University, 69100, Lyon, France
| | - Joan Bausells
- Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Abdelhamid Errachid
- Institute of Analytical Sciences (ISA) - UMR 5280, Claude Bernard Lyon 1 University, 69100, Lyon, France.
| |
Collapse
|
6
|
Ari G, Rajendran S, Mahendra J, Ambalavanan N, Vijayaraj S, Mahendra L, Madapusi Balaji T, Ali Baeshen H, Patil S, Reda R, Testarelli L. Estimation of GCF and Salivary Levels of NT-proBNP in Systemically Healthy Subjects with Severe Chronic Periodontitis Before and After Periodontal Flap Surgery. Int J Gen Med 2023; 16:1809-1816. [PMID: 37213473 PMCID: PMC10198276 DOI: 10.2147/ijgm.s402929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023] Open
Abstract
Purpose The aim of the study was to estimate and compare the Saliva and GCF levels of NT-proBNP in systemically healthy subjects with severe chronic periodontitis before and after periodontal flap surgery. Materials and Methods Twenty subjects were selected and divided into two groups based on inclusion and exclusion criteria. Healthy Controls: 10 periodontally and systemically healthy subjects. Presurgery Group: 10 systemically healthy subjects with severe chronic generalized periodontitis. Postsurgery Group included Presurgery Group subjects who will undergo periodontal flap surgery. After the periodontal parameters were measured, GCF and saliva samples were collected. Postsurgery Group subjects underwent periodontal flap surgery and both periodontal parameters and GCF and saliva levels were reassessed after 6 months. Results Presurgery Group showed a higher mean value of plaque index, modified gingival index, probing pocket depth and clinical attachment level when compared to Healthy Controls and it was found to decrease after periodontal flap surgery (Postsurgery Group). Intergroup comparison (Presurgery Group vs Postsurgery Group) of the mean difference of salivary NT-proBNP was found to be statistically significant. GCF levels of NT-proBNP also decreased after periodontal flap surgery but the difference was not statistically significant. Conclusion NT pro-BNP levels were found to be higher in periodontitis group as compared to the controls. The levels decreased following surgical periodontal therapy, elucidating the role of periodontal treatment on the expression of NT-proBNP as a salivary and GCF marker. NT-proBNP could serve as a potential biomarker for periodontitis in saliva and GCF in future.
Collapse
Affiliation(s)
- Geetha Ari
- Department of Periodontology, Meenakshi Ammal Dental College and Hospital, Chennai, 600095, India
| | - Sathish Rajendran
- Department of Periodontology, Meenakshi Ammal Dental College and Hospital, Chennai, 600095, India
| | - Jaideep Mahendra
- Department of Periodontology, Meenakshi Ammal Dental College and Hospital, Chennai, 600095, India
- Correspondence: Jaideep Mahendra, Department of Periodontology, Meenakshi Ammal Dental College and Hospital, Chennai, 600095, India, Email
| | - N Ambalavanan
- Department of Periodontology, Meenakshi Ammal Dental College and Hospital, Chennai, 600095, India
| | - Shonali Vijayaraj
- Department of Periodontology, Meenakshi Ammal Dental College and Hospital, Chennai, 600095, India
| | - Little Mahendra
- Department of Periodontics, Maktoum Bin Hamdan Dental University College, Dubai, 213620, United Arab Emirates
| | - Thodur Madapusi Balaji
- Department of Periodontology, Tagore Medical and Dental College, Chennai, Tamil Nadu, 600127, India
| | - Hosam Ali Baeshen
- Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, 84095, USA
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Rodolfo Reda
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, 00161, Italy
- Department of Prosthodontics and Implantology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Luca Testarelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, 00161, Italy
| |
Collapse
|
7
|
Ben Halima H, Bellagambi F, Hangouet M, Alcacer A, Pfeiffer N, Heuberger A, Zine N, Bausells J, Elaissari A, ERRACHID A. A novel IMFET biosensor strategy for Interleukin‐10 quantification for early screening heart failure disease in saliva. ELECTROANAL 2022. [DOI: 10.1002/elan.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Komarova N, Panova O, Titov A, Kuznetsov A. Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines 2022; 10:biomedicines10051085. [PMID: 35625822 PMCID: PMC9138532 DOI: 10.3390/biomedicines10051085] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
The detection of cardiac biomarkers is used for diagnostics, prognostics, and the risk assessment of cardiovascular diseases. The analysis of cardiac biomarkers is routinely performed with high-sensitivity immunological assays. Aptamers offer an attractive alternative to antibodies for analytical applications but, to date, are not widely practically implemented in diagnostics and medicinal research. This review summarizes the information on the most common cardiac biomarkers and the current state of aptamer research regarding these biomarkers. Aptamers as an analytical tool are well established for troponin I, troponin T, myoglobin, and C-reactive protein. For the rest of the considered cardiac biomarkers, the isolation of novel aptamers or more detailed characterization of the known aptamers are required. More attention should be addressed to the development of dual-aptamer sandwich detection assays and to the studies of aptamer sensing in alternative biological fluids. The universalization of aptamer-based biomarker detection platforms and the integration of aptamer-based sensing to clinical studies are demanded for the practical implementation of aptamers to routine diagnostics. Nevertheless, the wide usage of aptamers for the diagnostics of cardiovascular diseases is promising for the future, with respect to both point-of-care and laboratory testing.
Collapse
|