1
|
Manten K, Katzenschlager S, Brümmer LE, Schmitz S, Gaeddert M, Erdmann C, Grilli M, Pollock NR, Macé A, Erkosar B, Carmona S, Ongarello S, Johnson CC, Sacks JA, Faehling V, Bornemann L, Weigand MA, Denkinger CM, Yerlikaya S. Clinical accuracy of instrument-based SARS-CoV-2 antigen diagnostic tests: a systematic review and meta-analysis. Virol J 2024; 21:99. [PMID: 38685117 PMCID: PMC11059670 DOI: 10.1186/s12985-024-02371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND During the COVID-19 pandemic, antigen diagnostic tests were frequently used for screening, triage, and diagnosis. Novel instrument-based antigen tests (iAg tests) hold the promise of outperforming their instrument-free, visually-read counterparts. Here, we provide a systematic review and meta-analysis of the SARS-CoV-2 iAg tests' clinical accuracy. METHODS We systematically searched MEDLINE (via PubMed), Web of Science, medRxiv, and bioRxiv for articles published before November 7th, 2022, evaluating the accuracy of iAg tests for SARS-CoV-2 detection. We performed a random effects meta-analysis to estimate sensitivity and specificity and used the QUADAS-2 tool to assess study quality and risk of bias. Sub-group analysis was conducted based on Ct value range, IFU-conformity, age, symptom presence and duration, and the variant of concern. RESULTS We screened the titles and abstracts of 20,431 articles and included 114 publications that fulfilled the inclusion criteria. Additionally, we incorporated three articles sourced from the FIND website, totaling 117 studies encompassing 95,181 individuals, which evaluated the clinical accuracy of 24 commercial COVID-19 iAg tests. The studies varied in risk of bias but showed high applicability. Of 24 iAg tests from 99 studies assessed in the meta-analysis, the pooled sensitivity and specificity compared to molecular testing of a paired NP swab sample were 76.7% (95% CI 73.5 to 79.7) and 98.4% (95% CI 98.0 to 98.7), respectively. Higher sensitivity was noted in individuals with high viral load (99.6% [95% CI 96.8 to 100] at Ct-level ≤ 20) and within the first week of symptom onset (84.6% [95% CI 78.2 to 89.3]), but did not differ between tests conducted as per manufacturer's instructions and those conducted differently, or between point-of-care and lab-based testing. CONCLUSION Overall, iAg tests have a high pooled specificity but a moderate pooled sensitivity, according to our analysis. The pooled sensitivity increases with lower Ct-values (a proxy for viral load), or within the first week of symptom onset, enabling reliable identification of most COVID-19 cases and highlighting the importance of context in test selection. The study underscores the need for careful evaluation considering performance variations and operational features of iAg tests.
Collapse
Affiliation(s)
- Katharina Manten
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Katzenschlager
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Lukas E Brümmer
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephani Schmitz
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Mary Gaeddert
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Maurizio Grilli
- Library, University Medical Center Mannheim, Mannheim, Germany
| | - Nira R Pollock
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | | | | | | | - Cheryl C Johnson
- Global HIV, Hepatitis and STIs Programmes, World Health Organization, Geneva, Switzerland
| | - Jilian A Sacks
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Verena Faehling
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Linus Bornemann
- Institute of Virology, Faculty of Medicine, University Medical Centre, University of Freiburg, Freiburg, Germany
| | - Markus A Weigand
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Claudia M Denkinger
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| | - Seda Yerlikaya
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
2
|
Kyo H, Patel SA, Yamamoto M, Matsumura Y, Ikeda T, Nagao M. A population-based study of the trend in SARS-CoV-2 diagnostic modalities from the beginning of the pandemic to the Omicron surge in Kyoto City, Kyoto, Japan. BMC Public Health 2023; 23:2551. [PMID: 38129830 PMCID: PMC10734122 DOI: 10.1186/s12889-023-17498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) presents critical diagnostic challenges for managing the pandemic. We investigated the 30-month changes in COVID-19 testing modalities and functional testing sites from the early period of the pandemic to the most recent Omicron surge in 2022 in Kyoto City, Japan. METHODS This is a retrospective-observational study using a local anonymized population database that included patients' demographic and clinical information, testing methods and facilities from January 2020 to June 2022, a total of 30 months. We computed the distribution of symptomatic presentation, testing methods, and testing facilities among cases. Differences over time were tested using chi-square tests of independence. RESULTS During the study period, 133,115 confirmed COVID-19 cases were reported, of which 90.9% were symptomatic. Although nucleic acid amplification testing occupied 68.9% of all testing, the ratio of lateral flow devices (LFDs) rapidly increased in 2022. As the pandemic continued, the testing capability was shifted from COVID-19 designated facilities to general practitioners, who became the leading testing providers (57.3% of 99,945 tests in 2022). CONCLUSIONS There was a dynamic shift in testing modality during the first 30 months of the pandemic in Kyoto City. General practitioners increased their role substantially as the use of LFDs spread dramatically in 2022. By comprehending and documenting the evolution of testing methods and testing locations, it is anticipated that this will contribute to the establishment of an even more efficient testing infrastructure for the next pandemic.
Collapse
Affiliation(s)
- Hiroki Kyo
- MetroAtlanta Ambulance Service, Emory Healthcare Network, Atlanta, GA, USA
| | - Shivani A Patel
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Takeshi Ikeda
- Public Health and Welfare Bureau of Kyoto City, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan.
| |
Collapse
|
3
|
Fragkou PC, De Angelis G, Menchinelli G, Can F, Garcia F, Morfin-Sherpa F, Dimopoulou D, Dimopoulou K, Zelli S, de Salazar A, Reiter R, Janocha H, Grossi A, Omony J, Skevaki C. Update of ESCMID COVID-19 guidelines: diagnostic testing for SARS-CoV-2. Clin Microbiol Infect 2023:S1198-743X(23)00192-1. [PMID: 37088423 PMCID: PMC10122552 DOI: 10.1016/j.cmi.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
SCOPE Since the onset of coronavirus disease 2019 (COVID-19), several assays have been deployed for the diagnosis of SARS-CoV-2. The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) published the first set of guidelines on SARS-CoV-2 in-vitro diagnosis in February 2022. Since the COVID-19 landscape is rapidly evolving, the relevant ESCMID guidelines panel releases an update of the previously published recommendations on diagnostic testing for SARS-CoV-2. This update aims to delineate the best diagnostic approach for SARS-CoV-2 in different populations based on current evidence. METHODS An ESCMID COVID-19 guidelines task force was established by the ESCMID Executive Committee. A small group was established, half appointed by the chair, and the remaining selected with an open call. The panel met virtually once a week. For all decisions, a simple majority vote was used. A list of clinical questions using the PICO (population, intervention, comparison, and outcome) format was developed at the beginning of the process. For each PICO, two panel members performed a literature search focusing on systematic reviews with a third panellist involved in case of inconsistent results. The panel reassessed the PICOs previously defined as priority in the first set of guidelines and decided to address 49 PICO questions, as 6 of them were discarded as outdated/non-clinically relevant. The "Grading of Recommendations Assessment, Development and Evaluation(GRADE)-adoption, adaptation, and de novo development of recommendations (ADOLOPMENT)" evidence-to-decision framework was utilized to produce the guidelines. QUESTIONS ADDRESSED BY THE GUIDELINE AND RECOMMENDATIONS After literature search, we updated 16 PICO questions; these PICOs address the use of antigen-based assays among symptomatic and asymptomatic patients with different ages, COVID-19 severity status or risk for severe COVID-19, time since onset of symptoms/contact with an infectious case, and finally, types of biomaterials used.
Collapse
Affiliation(s)
- Paraskevi C Fragkou
- First Department of Critical Care Medicine & Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV)
| | - Giulia De Angelis
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS - 00168, Rome, Italy
| | - Giulia Menchinelli
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS - 00168, Rome, Italy; Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fusun Can
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Department of Medical Microbiology, Koc University School of Medicine, Istanbul, Turkey; Koc University IsBank Research Centre for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Federico Garcia
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Servicio de Microbiología Clínica. Hospital Universitario Clínico San Cecilio. Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain; Centro de Investigación Biomédicaen Red Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Florence Morfin-Sherpa
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Laboratory of Virology, Institut des Agents Infectieux, National Reference Centre for respiratory viruses, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Dimitra Dimopoulou
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Second Department of Paediatrics, "P. and A. Kyriakou" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Silvia Zelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS - 00168, Rome, Italy
| | - Adolfo de Salazar
- Servicio de Microbiología Clínica. Hospital Universitario Clínico San Cecilio. Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain; Centro de Investigación Biomédicaen Red Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Rieke Reiter
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), Philipps University Marburg, German Centre for Lung Research (DZL), Marburg, Germany
| | - Hannah Janocha
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), Philipps University Marburg, German Centre for Lung Research (DZL), Marburg, Germany
| | | | - Jimmy Omony
- Institute for Asthma and Allergy Prevention (IAP), Helmholtz Zentrum Munich, German Research Centre for Environmental Health (GmbH), Munich, Germany
| | - Chrysanthi Skevaki
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), Philipps University Marburg, German Centre for Lung Research (DZL), Marburg, Germany.
| |
Collapse
|
4
|
Vetrugno G, Sanguinetti M, Murri R, Sali M, Marchetti S, Santangelo R, Fantoni M, Cingolani A, Scoppettuolo G, Di Donato M, Grassi VM, Foti F, Marchese L, De-Giorgio F, Oliva A, Staiti D, De Simone FM, Pascucci D, Cascini F, Pastorino R, Pires Marafon D, Cambieri A, Laurenti P, Boccia S, Ricciardi W, Franceschi F, on behalf of Gemelli-Against-COVID Group. Effect of Lockdowns on Hospital Staff in a COVID Center: A Retrospective Observational Study. Vaccines (Basel) 2022; 10:1847. [PMID: 36366356 PMCID: PMC9698425 DOI: 10.3390/vaccines10111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
At the onset of the SARS-CoV-2 pandemic, individual and social measures were strengthened through restrictive non-pharmaceutical interventions, labelled with the term “lockdown”. In Italy, there were two lockdowns (9 March 2020−3 May 2020 and 3 November 2020−27 March 2021). As part of preventive measures, healthcare workers and the administrative staff population of Policlinico A. Gemelli underwent nasopharyngeal swab tests from 1 March 2020 to 9 February 2022, a long time interval that includes the two aforementioned lockdowns. The population included 8958 people from 1 March 2020 to 31 December 2020; 8981 people from 1 January 2021 to 31 December 2021; and 8981 people from 1 January 2022 to 9 February 2022. We then analysed pseudo-anonymized data, using a retrospective observational approach to evaluate the impact of the lockdown on the incidence of SARS-CoV-2 infections within the population. Given the 14 day contagious period, the swab positivity rate (SPR) among the staff decreased significantly at the end of the first lockdown, every day prior to 18 May 2020, by 0.093 (p < 0.0001, CI = (−0.138−−0.047)). After the fourteenth day post the end of the first lockdown (18 May 2020), the SPR increased daily at a rate of 0.024 (p < 0.0001, 95% CI = (0.013−0.034)). In addition, the SPR appeared to increase significantly every day prior to 17 November 2020 by 0.024 (p < 0.0001, CI = (0.013−0.034)). After the fourteenth day post the start of the second lockdown (17 November 2020), the SPR decreased daily at a rate of 0.039 (p < 0.0001, 95% CI = (−0.050−−0.027)). These data demonstrate that, in our Institution, the lockdowns helped to both protect healthcare workers and maintain adequate standards of care for COVID and non-COVID patients for the duration of the state of emergency in Italy.
Collapse
Affiliation(s)
- Giuseppe Vetrugno
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Rita Murri
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michela Sali
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Simona Marchetti
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
| | - Rosaria Santangelo
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimo Fantoni
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonella Cingolani
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giancarlo Scoppettuolo
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michele Di Donato
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
| | - Vincenzo M. Grassi
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Foti
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Marchese
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabio De-Giorgio
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Oliva
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Domenico Staiti
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Domenico Pascucci
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fidelia Cascini
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Roberta Pastorino
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Denise Pires Marafon
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Cambieri
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
| | - Patrizia Laurenti
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefania Boccia
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Walter Ricciardi
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Franceschi
- Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | |
Collapse
|
5
|
Clinical Performance of Rapid Antigen Tests for the Detection of SARS-CoV-2 Infection in the Emergency Department and Community: A Retrospective Study. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:9447251. [PMID: 36249591 PMCID: PMC9560843 DOI: 10.1155/2022/9447251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
Background Rapid antigen tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection have been authorized for emergency use (EUA); however, the performance has not been fully evaluated in clinical contexts. This study aimed to provide evidence regarding the diagnostic performance of SARS-CoV-2 rapid antigen tests compared with the real-time reverse transcription-polymerase chain reaction (RT-PCR) test in the emergency department (ED) and community. Methods Patients who underwent SARS-CoV-2 rapid antigen tests using the VTRUST COVID-19 Antigen Rapid Test (TD-4531) and real-time RT-PCR on the same day in the ED or community from May 24, 2021, to June 24, 2021, were examined. Results Paired nasopharyngeal swabs were collected from 4022 suspected COVID-19 patients: 800 in the ED and 3222 in the community. Overall, 62 (1.54%) tested positive, 13 tested indeterminate, and 3947 tested negative by real-time RT-PCR. The sensitivity and specificity of the antigen test were 51.61% and 99.44% (overall), 62.50% and 99.61% (ED), and 31.82% and 99.40% (community), respectively. There were 30 false negatives and 22 false positives. Among the false negatives, 16.67% had a cycle threshold (Ct) value of <25. Conclusion The VTRUST COVID-19 Antigen Rapid Test showed comparable specificity as real-time RT-PCR for the ED and community, but the sensitivity was relatively low, especially when the Ct value was >25. This test can be useful for the rapid identification of infected subjects in an epidemic situation.
Collapse
|
6
|
Brümmer LE, Katzenschlager S, McGrath S, Schmitz S, Gaeddert M, Erdmann C, Bota M, Grilli M, Larmann J, Weigand MA, Pollock NR, Macé A, Erkosar B, Carmona S, Sacks JA, Ongarello S, Denkinger CM. Accuracy of rapid point-of-care antigen-based diagnostics for SARS-CoV-2: An updated systematic review and meta-analysis with meta-regression analyzing influencing factors. PLoS Med 2022; 19:e1004011. [PMID: 35617375 PMCID: PMC9187092 DOI: 10.1371/journal.pmed.1004011] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Comprehensive information about the accuracy of antigen rapid diagnostic tests (Ag-RDTs) for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is essential to guide public health decision makers in choosing the best tests and testing policies. In August 2021, we published a systematic review and meta-analysis about the accuracy of Ag-RDTs. We now update this work and analyze the factors influencing test sensitivity in further detail. METHODS AND FINDINGS We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched preprint and peer-reviewed databases for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 until August 31, 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity with reverse transcription polymerase chain reaction (RT-PCR) testing as a reference. To evaluate factors influencing test sensitivity, we performed 3 different analyses using multivariable mixed-effects meta-regression models. We included 194 studies with 221,878 Ag-RDTs performed. Overall, the pooled estimates of Ag-RDT sensitivity and specificity were 72.0% (95% confidence interval [CI] 69.8 to 74.2) and 98.9% (95% CI 98.6 to 99.1). When manufacturer instructions were followed, sensitivity increased to 76.3% (95% CI 73.7 to 78.7). Sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values (97.9% [95% CI 96.9 to 98.9] and 90.6% [95% CI 88.3 to 93.0] for Ct-values <20 and <25, compared to 54.4% [95% CI 47.3 to 61.5] and 18.7% [95% CI 13.9 to 23.4] for Ct-values ≥25 and ≥30) and was estimated to increase by 2.9 percentage points (95% CI 1.7 to 4.0) for every unit decrease in mean Ct-value when adjusting for testing procedure and patients' symptom status. Concordantly, we found the mean Ct-value to be lower for true positive (22.2 [95% CI 21.5 to 22.8]) compared to false negative (30.4 [95% CI 29.7 to 31.1]) results. Testing in the first week from symptom onset resulted in substantially higher sensitivity (81.9% [95% CI 77.7 to 85.5]) compared to testing after 1 week (51.8%, 95% CI 41.5 to 61.9). Similarly, sensitivity was higher in symptomatic (76.2% [95% CI 73.3 to 78.9]) compared to asymptomatic (56.8% [95% CI 50.9 to 62.4]) persons. However, both effects were mainly driven by the Ct-value of the sample. With regards to sample type, highest sensitivity was found for nasopharyngeal (NP) and combined NP/oropharyngeal samples (70.8% [95% CI 68.3 to 73.2]), as well as in anterior nasal/mid-turbinate samples (77.3% [95% CI 73.0 to 81.0]). Our analysis was limited by the included studies' heterogeneity in viral load assessment and sample origination. CONCLUSIONS Ag-RDTs detect most of the individuals infected with SARS-CoV-2, and almost all (>90%) when high viral loads are present. With viral load, as estimated by Ct-value, being the most influential factor on their sensitivity, they are especially useful to detect persons with high viral load who are most likely to transmit the virus. To further quantify the effects of other factors influencing test sensitivity, standardization of clinical accuracy studies and access to patient level Ct-values and duration of symptoms are needed.
Collapse
Affiliation(s)
- Lukas E. Brümmer
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Sean McGrath
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Stephani Schmitz
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mary Gaeddert
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Marc Bota
- Agaplesion Bethesda Hospital, Hamburg, Germany
| | - Maurizio Grilli
- Library, University Medical Center Mannheim, Mannheim, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nira R. Pollock
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | | | | | | | | | | | - Claudia M. Denkinger
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
7
|
Khalid MF, Selvam K, Jeffry AJN, Salmi MF, Najib MA, Norhayati MN, Aziah I. Performance of Rapid Antigen Tests for COVID-19 Diagnosis: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:diagnostics12010110. [PMID: 35054277 PMCID: PMC8774565 DOI: 10.3390/diagnostics12010110] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
The identification of viral RNA using reverse transcription quantitative polymerase chain reaction (RT-qPCR) is the gold standard for identifying an infection caused by SARS-CoV-2. The limitations of RT-qPCR such as requirement of expensive instruments, trained staff and laboratory facilities led to development of rapid antigen tests (RATs). The performance of RATs has been widely evaluated and found to be varied in different settings. The present systematic review aims to evaluate the pooled sensitivity and specificity of the commercially available RATs. This review was registered on PROSPERO (registration number: CRD42021278105). Literature search was performed through PubMed, Embase and Cochrane COVID-19 Study Register to search studies published up to 26 August 2021. The overall pooled sensitivity and specificity of RATs and subgroup analyses were calculated. Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to assess the risk of bias in each study. The overall pooled sensitivity and specificity of RATs were 70% (95% CI: 69–71) and 98% (95% CI: 98–98), respectively. In subgroup analyses, nasal swabs showed the highest sensitivity of 83% (95% CI: 80–86) followed by nasopharyngeal swabs 71% (95% CI: 70–72), throat swabs 69% (95% CI: 63–75) and saliva 68% (95% CI: 59–77). Samples from symptomatic patients showed a higher sensitivity of 82% (95% CI: 82–82) as compared to asymptomatic patients at 68% (95% CI: 65–71), while a cycle threshold (Ct) value ≤25 showed a higher sensitivity of 96% (95% CI: 95–97) as compared to higher Ct value. Although the sensitivity of RATs needs to be enhanced, it may still be a viable option in places where laboratory facilities are lacking for diagnostic purposes in the early phase of disease.
Collapse
Affiliation(s)
- Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.F.K.); (K.S.); (M.A.N.)
| | - Kasturi Selvam
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.F.K.); (K.S.); (M.A.N.)
| | - Alfeq Jazree Nashru Jeffry
- Faculty of Resource Science and Technology (FRST), Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia; (A.J.N.J.); (M.F.S.)
| | - Mohamad Fazrul Salmi
- Faculty of Resource Science and Technology (FRST), Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia; (A.J.N.J.); (M.F.S.)
| | - Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.F.K.); (K.S.); (M.A.N.)
| | - Mohd Noor Norhayati
- Department of Family Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.F.K.); (K.S.); (M.A.N.)
- Correspondence:
| |
Collapse
|
8
|
Vetrugno G, Grassi S, Clemente F, Cazzato F, Rossi V, Grassi VM, Buonsenso D, Filograna L, Sanguinetti M, Focardi M, Valentini P, Ozonoff A, Pinchi V, Oliva A. Microbiological screening tests for SARS-CoV-2 in the first hour since the hospital admission: A reliable tool for enhancing the safety of pediatric care. Front Pediatr 2022; 10:966901. [PMID: 36147810 PMCID: PMC9485667 DOI: 10.3389/fped.2022.966901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION/PURPOSE Since a significant proportion of SARS-CoV-2 infections occur within healthcare facilities, a multidisciplinary approach is required for careful and timely assessment of the risk of infection in asymptomatic patients or those whose COVID-19 diagnosis has not yet been made. The aim of this study was to investigate whether an adaptative model based on microbiological testing can represent a valid risk management strategy. MATERIAL AND METHODS We collected data from the risk management unit database of a 1,550-bed tertiary hospital (Fondazione Policlinico Gemelli IRCCS, Rome, Italy) concerning pediatric admissions to the Emergency Department (ED) from 1 March 2020 to 31 December 2021. The study period was subdivided in period A and period B according to the technique used for the microbiological screening, respectively reverse-transcription polymerase chain reaction (RT-PCR) and antigen-detection test. RESULTS In Period A, 426 children (mean age: 6 years) underwent microbiological screening at the ED. The total number of molecular tests performed was 463. 459/463 tested negative at the molecular test. In Period B, 887 children (mean age: 6 years) underwent microbiological screening in the ED. The total number of molecular tests performed was 1,154. 1,117/1,154 tested negative at the molecular test. Neither in Period A nor in Period B hospital-acquired SARS-CoV-2 infections were reported. DISCUSSION AND CONCLUSION Despite high volumes, no cases of hospital-acquired SARS-CoV-2 infection have been reported. SARS-CoV-2 antigen-based tests can be used as a first-line option as they provide rapid results compared to RT-PCR, reducing the risk of infection in ED waiting rooms.
Collapse
Affiliation(s)
- Giuseppe Vetrugno
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Simone Grassi
- Section of Forensic Medical Sciences, Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesco Clemente
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Rome, Italy.,Section of Legal Medicine, Department of Interdisciplinary Medicine, Bari Policlinico Hospital, University of Bari, Bari, Italy
| | - Francesca Cazzato
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Vittoria Rossi
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Vincenzo M Grassi
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura Filograna
- Department of Diagnostic and Interventional Radiology, Molecular Imaging and Radiotherapy, PTV Foundation, "Tor Vergata" University of Rome, Rome, Italy
| | - Maurizio Sanguinetti
- Laboratory of Microbiology, "A. Gemelli" Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Martina Focardi
- Section of Forensic Medical Sciences, Department of Health Sciences, University of Florence, Florence, Italy
| | - Piero Valentini
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Vilma Pinchi
- Section of Forensic Medical Sciences, Department of Health Sciences, University of Florence, Florence, Italy
| | - Antonio Oliva
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
9
|
Martín-Sánchez V, Fernández-Villa T, Carvajal Urueña A, Rivero Rodríguez A, Reguero Celada S, Sánchez Antolín G, Fernández-Vázquez JP. Role of Rapid Antigen Testing in Population-Based SARS-CoV-2 Screening. J Clin Med 2021; 10:3854. [PMID: 34501297 PMCID: PMC8432187 DOI: 10.3390/jcm10173854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
This study evaluates a population-based screening of asymptomatic people, using a rapid antigen diagnostic test (RADT), in areas of high transmission. To detect sources of SARS-CoV-2 infection, nasopharyngeal samples were taken and were tested using RADT. Confirmatory RT-qPCR tests were performed in both positive and negative cases. The internal validity of the RADT, the prevalence of infection, and the positive and negative predictive values (PPV and NPV) were estimated, based on the percentages of confirmed cases with 95% confidence interval. Of the 157,920 people registered, 50,492 participated in the screening; 50,052 were negative, and 440 were positive on the RADT (0.87%). A total of 221 positive RADT samples were reanalysed using RT-qPCR and 214 were confirmed as positive (96.8%; 95% CI: 93.5-98.7%), while 657 out of 660 negative RADT samples were confirmed as RT-qPCR negative (99.5%; 95% CI 98.7-99.9%). The sensitivity obtained was 65.1% (38.4-90.2%) and the specificity was 99.97% (99.94-99.99%). The prevalence of infection was 1.30% (0.95-2.13%). The PPVs were 95.4% (85.9-98.9%) and 97.9% (93.3-99.5%), respectively, while the NPVs were 99.7% (99.4-100%) and 99.2% (98.7-100%), respectively. The high specificity found allow us to report a high screening performance in asymptomatic patients, even in areas where the prevalence of infection was less than 2%.
Collapse
Affiliation(s)
- Vicente Martín-Sánchez
- Research Group on Gene-Environment Interactions and Health (GIIGAS), Institute of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain;
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain
| | - Tania Fernández-Villa
- Research Group on Gene-Environment Interactions and Health (GIIGAS), Institute of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain;
| | | | - Ana Rivero Rodríguez
- Gerencia de Atención Primaria, 24008 León, Spain; (A.R.R.); (S.R.C.); (J.P.F.-V.)
| | - Sofía Reguero Celada
- Gerencia de Atención Primaria, 24008 León, Spain; (A.R.R.); (S.R.C.); (J.P.F.-V.)
| | | | | |
Collapse
|