1
|
D'Andrea L, Gastaldi D, Baino F, Verné E, Schwentenwein M, Örlygsson G, Vena P. Computational models for the simulation of the elastic and fracture properties of highly porous 3D-printed hydroxyapatite scaffolds. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3795. [PMID: 37997203 DOI: 10.1002/cnm.3795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/29/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
Bone scaffolding is a promising approach for the treatment of critical-size bone defects. Hydroxyapatite can be used to produce highly porous scaffolds as it mimics the mineralized part of bone tissue, but its intrinsic brittleness limits its usage. Among 3D printing techniques, vat photopolymerization allows for the best printing resolution for ceramic materials. In this study, we implemented a Computed micro-Tomography based Finite Element Model of a hydroxyapatite porous scaffold fabricated by vat photopolymerization. We used the model in order to predict the elastic and fracture properties of the scaffold. From the stress-strain diagram of a simulated compression test, we computed the stiffness and the strength of the scaffolds. We found that three morphometric features substantially affect the crack pattern. In particular, the crack propagation is not only dependent on the trabecular thickness but also depends on the slenderness and orientation of the trabeculae with respect to the load. The results found in this study can be used for the design of ceramic scaffolds with heterogeneous pore distribution in order to tailor and predict the compressive strength.
Collapse
Affiliation(s)
- Luca D'Andrea
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Dario Gastaldi
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Institute of Materials Physics and Engineering, Turin, Italy
| | - Enrica Verné
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Institute of Materials Physics and Engineering, Turin, Italy
| | | | | | - Pasquale Vena
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
2
|
Soldati E, Roseren F, Guenoun D, Mancini L, Catelli E, Prati S, Sciutto G, Vicente J, Iotti S, Bendahan D, Malucelli E, Pithioux M. Multiscale Femoral Neck Imaging and Multimodal Trabeculae Quality Characterization in an Osteoporotic Bone Sample. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8048. [PMID: 36431532 PMCID: PMC9694313 DOI: 10.3390/ma15228048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Although multiple structural, mechanical, and molecular factors are definitely involved in osteoporosis, the assessment of subregional bone mineral density remains the most commonly used diagnostic index. In this study, we characterized bone quality in the femoral neck of one osteoporotic patients as compared to an age-matched control subject, and so used a multiscale and multimodal approach including X-ray computed microtomography at different spatial resolutions (pixel size: 51.0, 4.95 and 0.9 µm), microindentation and Fourier transform infrared spectroscopy. Our results showed abnormalities in the osteocytes lacunae volume (358.08 ± 165.00 for the osteoporotic sample vs. 287.10 ± 160.00 for the control), whereas a statistical difference was found neither for shape nor for density. The osteoporotic femoral head and great trochanter reported reduced elastic modulus (Es) and hardness (H) compared to the control reference (−48% (p < 0.0001) and −34% (p < 0.0001), respectively for Es and H in the femoral head and −29% (p < 0.01) and −22% (p < 0.05), respectively for Es and H in the great trochanter), whereas the corresponding values in the femoral neck were in the same range. The spectral analysis could distinguish neither subregional differences in the osteoporotic sample nor between the osteoporotic and healthy samples. Although, infrared spectroscopic measurements were comparable among subregions, and so regardless of the bone osteoporotic status, the trabecular mechanical properties were comparable only in the femoral neck. These results illustrate that bone remodeling in osteoporosis is a non-uniform process with different rates in different bone anatomical regions, hence showing the interest of a clear analysis of the bone microarchitecture in the case of patients’ osteoporotic evaluation.
Collapse
Affiliation(s)
- Enrico Soldati
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
- Aix Marseille University, CNRS, CRMBM, 13385 Marseille, France
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
| | - Flavy Roseren
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
| | - Daphne Guenoun
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
- Aix Marseille University, APHM, CNRS, ISM, Sainte Marguerite Hospital, Institute for Locomotion, Department of Radiology, 13274 Marseille, France
| | - Lucia Mancini
- Elettra-Sincrotrone Trieste S.C.p.A, SS 14–km 1535 in Area Science Park, Basovizza, 34149 Trieste, Italy
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, 1000 Ljubljana, Slovenia
| | - Emilio Catelli
- University of Bologna, Department of Chemistry “G. Ciamician”, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Silvia Prati
- University of Bologna, Department of Chemistry “G. Ciamician”, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Giorgia Sciutto
- University of Bologna, Department of Chemistry “G. Ciamician”, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Jerome Vicente
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
| | - Stefano Iotti
- Università di Bologna, Department of Pharmacy and Biotechnology (FaBit), Via Zamboni 33, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - David Bendahan
- Aix Marseille University, CNRS, CRMBM, 13385 Marseille, France
| | - Emil Malucelli
- Università di Bologna, Department of Pharmacy and Biotechnology (FaBit), Via Zamboni 33, 40126 Bologna, Italy
| | - Martine Pithioux
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
- Aix Marseille University, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13274 Marseille, France
| |
Collapse
|
3
|
Margeta J, Hussain R, López Diez P, Morgenstern A, Demarcy T, Wang Z, Gnansia D, Martinez Manzanera O, Vandersteen C, Delingette H, Buechner A, Lenarz T, Patou F, Guevara N. A Web-Based Automated Image Processing Research Platform for Cochlear Implantation-Related Studies. J Clin Med 2022; 11:6640. [PMID: 36431117 PMCID: PMC9699139 DOI: 10.3390/jcm11226640] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
The robust delineation of the cochlea and its inner structures combined with the detection of the electrode of a cochlear implant within these structures is essential for envisaging a safer, more individualized, routine image-guided cochlear implant therapy. We present Nautilus-a web-based research platform for automated pre- and post-implantation cochlear analysis. Nautilus delineates cochlear structures from pre-operative clinical CT images by combining deep learning and Bayesian inference approaches. It enables the extraction of electrode locations from a post-operative CT image using convolutional neural networks and geometrical inference. By fusing pre- and post-operative images, Nautilus is able to provide a set of personalized pre- and post-operative metrics that can serve the exploration of clinically relevant questions in cochlear implantation therapy. In addition, Nautilus embeds a self-assessment module providing a confidence rating on the outputs of its pipeline. We present a detailed accuracy and robustness analyses of the tool on a carefully designed dataset. The results of these analyses provide legitimate grounds for envisaging the implementation of image-guided cochlear implant practices into routine clinical workflows.
Collapse
Affiliation(s)
- Jan Margeta
- Research and Development, KardioMe, 01851 Nova Dubnica, Slovakia
| | - Raabid Hussain
- Research and Technology Group, Oticon Medical, 2765 Smørum, Denmark
| | - Paula López Diez
- Department for Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anika Morgenstern
- Department of Otolaryngology, Medical University of Hannover, 30625 Hannover, Germany
| | - Thomas Demarcy
- Research and Technology Group, Oticon Medical, 2765 Smørum, Denmark
| | - Zihao Wang
- Epione Team, Inria, Université Côte d’Azur, 06902 Sophia Antipolis, France
| | - Dan Gnansia
- Research and Technology Group, Oticon Medical, 2765 Smørum, Denmark
| | | | - Clair Vandersteen
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France
| | - Hervé Delingette
- Epione Team, Inria, Université Côte d’Azur, 06902 Sophia Antipolis, France
| | - Andreas Buechner
- Department of Otolaryngology, Medical University of Hannover, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Medical University of Hannover, 30625 Hannover, Germany
| | - François Patou
- Research and Technology Group, Oticon Medical, 2765 Smørum, Denmark
| | - Nicolas Guevara
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France
| |
Collapse
|