1
|
Gou R, Ma X, Su N, Yuan S, Chen Q. Bilateral deformable attention transformer for screening of high myopia using optical coherence tomography. Comput Biol Med 2025; 191:110236. [PMID: 40253920 DOI: 10.1016/j.compbiomed.2025.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Myopia is a visual impairment caused by excessive refractive power of the cornea or lens or elongation of the eyeball. Due to the various classification criteria associated with high myopia, such as spherical equivalent (SE) and axial length (AL), existing methods primarily rely on individual classification criteria for model design. In this paper, to comprehensively utilize multiple indicators, we design a multi-label classification model for high myopia. Moreover, image data play a pivotal role in studying high myopia and pathological myopia. Notable features of high myopia, including increased retinal curvature, choroidal thinning, and scleral shadowing, are observable in Optical Coherence Tomography (OCT) images of the retina. We propose a model named Bilateral Deformable Attention Transformer (BDA-Tran) for multi-label screening of high myopia in OCT data. Based on the vision transformer, we introduce a bilateral deformable attention mechanism (BDA) where the queries in self-attention are composed of both the global queries and the data-dependent queries from the left and right sides. This flexible approach allows attention to focus on relevant regions and capture more myopia-related information features, thereby concentrating attention primarily on regions related to the choroid and sclera, among other areas associated with high myopia. BDA-Tran is trained and tested on OCT images of 243 patients, achieving the accuracies of 83.1 % and 87.7 % for SE and AL, respectively. Furthermore, we visualize attention maps to provide transparent and interpretable judgments. Experimental results demonstrate that BDA-Tran outperforms existing methods in terms of effectiveness and reliability under the same experimental conditions.
Collapse
Affiliation(s)
- Ruoxuan Gou
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiao Ma
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Na Su
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.
| |
Collapse
|
2
|
Zhou Y, Yang W, Dai Y. Optical coherence tomography angiography reveals macular microvascular changes in myopic adolescents following orthokeratology lens wear. Eur J Ophthalmol 2024; 34:1299-1307. [PMID: 38859764 DOI: 10.1177/11206721241260456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
BACKGROUND This study aimed to investigate the 6-month effects of wearing orthokeratology (OK) lenses on the retina vessel density (VD), vessel diameter index (VDI), and foveal avascular zone (FAZ) of myopia children using optical coherence tomography angiography, and to further investigate the underlying mechanisms of Orthokeratology in myopia control. METHODS Sixty-two eyes form 62 subjects were included in the study. Baseline and 6-month measurements of axial length (AL), anterior chamber depth (ACD), FAZ area, FAZ perimeter, FAZ circularity, vessel density (VD) and VDI from both the superficial capillary plexus (SCP) and deep capillary plexus (DCP) were obtained. RESULTS The mean age of the participants was 11.02 years (range: 8 years to 15 years), with 41.9% males and 58.1% females. Six months after orthokeratology, ACD decreased significantly, and AL remain unchanged. SCP-VD and DCP-VD significantly increased after treatment without obvious change of VDI, and FAZ parameters remained unchanged. During follow-up period, SCP-VD increased in all subgroups especially in mild myopia group, and DCP-VD increased significantly in all subgroups except for the group 8-10 years. CONCLUSION After the 6-month treatment of orthokeratology in myopia children, the macular microvasculature changed significantly. We observed a significant increase of vessel densities in both SCP and DCP without obvious effect on vascular morphology. The changes of DCP-VD tended to be more sensitive in the elder subgroup, and the efficacy of orthokeratology might be greater in mild myopia group. OCT-A may provide additional information on myopia progression and the mechanisms of controlling myopia with OK lens treatment.
Collapse
Affiliation(s)
- Yali Zhou
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenlei Yang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yikang Dai
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
3
|
Baldwin G, Tracy J, Vingopoulos F, Munsell M, Bennett C, Rodriguez JM, Choi H, Garg I, Tandias R, Wescott H, Finn MJ, Razavi P, Bannerman A, Zeng R, Vavvas DG, Husain D, Kim LA, Patel NA, Miller JB. Contrast Sensitivity Better Reflects Wide-Field Swept-Source Optical Coherence Tomography Angiography Vascular Metrics Among Healthy Eyes Compared to Visual Acuity. Ophthalmic Surg Lasers Imaging Retina 2024; 55:494-502. [PMID: 38917397 DOI: 10.3928/23258160-20240411-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND OBJECTIVE To evaluate the association between widefield swept-source optical coherence tomography angiography (WF SS-OCTA) and visual function in healthy eyes. PATIENTS AND METHODS Fifty-seven eyes of 45 patients were evaluated with visual acuity (VA), contrast sensitivity (CS), and WF SS-OCTA (3 × 3, 6 × 6, and 12 × 12 mm images) on the same day. Mixed-effects multivariable regression analyses were performed. RESULTS Contrast sensitivity metrics, including CS between 6 to 18 cycles per degree (cpd) and area under the logarithm CS function, were significantly associated with vessel density (VD) and vessel skeletonized density (VSD), whereas VA was not. The largest effect size was between CS at 18 cpd and VD (β = 0.41, P = 0.007) and VSD (β = 0.42, P = 0.006) on 12 × 12 mm images. CONCLUSIONS Reduced VSD and VD on WF SSOCTA was significantly associated with decreased CS, whereas VA was not. These results suggest CS could serve as a screening tool for early stage retinal and neurologic disorders. [Ophthalmic Surg Lasers Imaging Retina 2024;55:494-502.].
Collapse
|
4
|
Li Y, Wong D, Sreng S, Chung J, Toh A, Yuan H, Eppenberger LS, Leow C, Ting D, Liu N, Schmetterer L, Saw SM, Jonas JB, Chia A, Ang M. Effect of childhood atropine treatment on adult choroidal thickness using sequential deep learning-enabled segmentation. Asia Pac J Ophthalmol (Phila) 2024; 13:100107. [PMID: 39378966 DOI: 10.1016/j.apjo.2024.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
PURPOSE To describe choroidal thickness measurements using a sequential deep learning segmentation in adults who received childhood atropine treatment for myopia control. DESIGN Prospective, observational study. METHODS Choroidal thickness was measured by swept-source optical coherence tomography in adults who received childhood atropine, segmented using a sequential deep learning approach. RESULTS Of 422 eyes, 94 (22.3 %) had no previous exposure to atropine treatment, while 328 (77.7 %) had received topical atropine during childhood. After adjusting for age, sex, and axial length, childhood atropine exposure was associated with a thicker choroid by 32.1 μm (95 % CI, 9.2-55.0; P = 0.006) in the inner inferior, 23.5 μm (95 % CI, 1.9-45.1; P = 0.03) in the outer inferior, 21.8 μm (95 % CI, 0.76-42.9; P = 0.04) in the inner nasal, and 21.8 μm (95 % CI, 2.6-41.0; P = 0.03) in the outer nasal. Multivariable analysis, adjusted for age, sex, atropine use, and axial length, showed an independent association between central subfield choroidal thickness and the incidence of tessellated fundus (P < 0.001; OR, 0.97; 95 % CI, 0.96-0.98). CONCLUSIONS This study demonstrated that short-term (2-4 years) atropine treatment during childhood was associated with an increase in choroidal thickness of 20-40 μm in adulthood (10-20 years later), after adjusting for age, sex, and axial length. We also observed an independent association between eyes with thicker central choroidal measurements and reduced incidence of tessellated fundus. Our study suggests that childhood exposure to atropine treatment may affect choroidal thickness in adulthood.
Collapse
Affiliation(s)
- Yong Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Damon Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Syna Sreng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Joey Chung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Angeline Toh
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Han Yuan
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Leila Sara Eppenberger
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Cheryl Leow
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Daniel Ting
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Singapore; Byers Eye Institute, Sandford University, Palo Alto, CA, USA
| | - Nan Liu
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jost B Jonas
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Privatpraxis Prof Jonas and Dr Panda-Jonas, Heidelberg, Germany
| | - Audrey Chia
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Marcus Ang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Yii F, Nguyen L, Strang N, Bernabeu MO, Tatham AJ, MacGillivray T, Dhillon B. Factors associated with pathologic myopia onset and progression: A systematic review and meta-analysis. Ophthalmic Physiol Opt 2024; 44:963-976. [PMID: 38563652 DOI: 10.1111/opo.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE To synthesise evidence across studies on factors associated with pathologic myopia (PM) onset and progression based on the META-analysis for Pathologic Myopia (META-PM) classification framework. METHODS Findings from six longitudinal studies (5-18 years) were narratively synthesised and meta-analysed, using odds ratio (OR) as the common measure of association. All studies adjusted for baseline myopia, age and sex at a minimum. The quality of evidence was rated using the Grades of Recommendation, Assessment, Development and Evaluation framework. RESULTS Five out of six studies were conducted in Asia. There was inconclusive evidence of an independent effect (or lack thereof) of ethnicity and sex on PM onset/progression. The odds of PM onset increased with greater axial length (pooled OR: 2.03; 95% CI: 1.71-2.40; p < 0.001), older age (pooled OR: 1.07; 1.05-1.09; p < 0.001) and more negative spherical equivalent refraction, SER (OR: 0.77; 0.68-0.87; p < 0.001), all of which were supported by an acceptable level of evidence. Fundus tessellation was found to independently increase the odds of PM onset in a population-based study (OR: 3.02; 2.58-3.53; p < 0.001), although this was only supported by weak evidence. There was acceptable evidence that greater axial length (pooled OR: 1.23; 1.09-1.39; p < 0.001), more negative SER (pooled OR: 0.87; 0.83-0.92; p < 0.001) and higher education level (pooled OR: 3.17; 1.36-7.35; p < 0.01) increased the odds of PM progression. Other baseline factors found to be associated with PM progression but currently supported by weak evidence included age (pooled OR: 1.01), severity of myopic maculopathy (OR: 3.61), intraocular pressure (OR: 1.62) and hypertension (OR: 0.21). CONCLUSIONS Most PM risk/prognostic factors are not supported by an adequate evidence base at present (an indication that PM remains understudied). Current factors for which an acceptable level of evidence exists (limited in number) are unmodifiable in adults and lack personalised information. More longitudinal studies focusing on uncovering modifiable factors and imaging biomarkers are warranted.
Collapse
Affiliation(s)
- Fabian Yii
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Curle Ophthalmology Laboratory, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Linda Nguyen
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Niall Strang
- Department of Vision Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
- The Bayes Centre, The University of Edinburgh, Edinburgh, UK
| | - Andrew J Tatham
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, UK
| | - Tom MacGillivray
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Curle Ophthalmology Laboratory, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Baljean Dhillon
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Curle Ophthalmology Laboratory, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, UK
| |
Collapse
|
6
|
Wu XY, Fang HH, Xu YW, Zhang YL, Zhang SC, Yang WH. Bibliometric analysis of hotspots and trends of global myopia research. Int J Ophthalmol 2024; 17:940-950. [PMID: 38766336 PMCID: PMC11074204 DOI: 10.18240/ijo.2024.05.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/14/2023] [Indexed: 05/22/2024] Open
Abstract
AIM To gain insights into the global research hotspots and trends of myopia. METHODS Articles were downloaded from January 1, 2013 to December 31, 2022 from the Science Core Database website and were mainly statistically analyzed by bibliometrics software. RESULTS A total of 444 institutions in 87 countries published 4124 articles. Between 2013 and 2022, China had the highest number of publications (n=1865) and the highest H-index (61). Sun Yat-sen University had the highest number of publications (n=229) and the highest H-index (33). Ophthalmology is the main category in related journals. Citations from 2020 to 2022 highlight keywords of options and reference, child health (pediatrics), myopic traction mechanism, public health, and machine learning, which represent research frontiers. CONCLUSION Myopia has become a hot research field. China and Chinese institutions have the strongest academic influence in the field from 2013 to 2022. The main driver of myopic research is still medical or ophthalmologists. This study highlights the importance of public health in addressing the global rise in myopia, especially its impact on children's health. At present, a unified theoretical system is still needed. Accurate surgical and therapeutic solutions must be proposed for people with different characteristics to manage and intervene refractive errors. In addition, the benefits of artificial intelligence (AI) models are also reflected in disease monitoring and prediction.
Collapse
Affiliation(s)
- Xing-Yang Wu
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, Guangdong Province, China
| | - Hui-Hui Fang
- School of Future Technology, South China University of Technology, Guangzhou 510641, Guangdong Province, China
| | - Yan-Wu Xu
- School of Future Technology, South China University of Technology, Guangzhou 510641, Guangdong Province, China
| | - Yan-Ling Zhang
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, Guangdong Province, China
| | - Shao-Chong Zhang
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, Guangdong Province, China
| | - Wei-Hua Yang
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, Guangdong Province, China
| |
Collapse
|
7
|
Baksh J, Lee D, Mori K, Zhang Y, Torii H, Jeong H, Hou J, Negishi K, Tsubota K, Kurihara T. Myopia Is an Ischemic Eye Condition: A Review from the Perspective of Choroidal Blood Flow. J Clin Med 2024; 13:2777. [PMID: 38792319 PMCID: PMC11122110 DOI: 10.3390/jcm13102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Myopia is a common refractive error that affects a large proportion of the population. Recent studies have revealed that alterations in choroidal thickness (ChT) and choroidal blood flow (ChBF) play important roles in the progression of myopia. Reduced ChBF could affect scleral cellular matrix remodeling, which leads to axial elongation and further myopia progression. As ChT and ChBF could be used as potential biomarkers for the progression of myopia, several recent myopia treatments have targeted alterations in ChT and ChBF. Our review provides a comprehensive overview of the recent literature review on the relationship between ChBF and myopia. We also highlight the importance of ChT and ChBF in the progression of myopia and the potential of ChT as an important biomarker for myopia progression. This summary has significant implications for the development of novel strategies for preventing and treating myopia.
Collapse
Affiliation(s)
- Jiaul Baksh
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Deokho Lee
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kiwako Mori
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yan Zhang
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hidemasa Torii
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Heonuk Jeong
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jing Hou
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Tsubota Laboratory, Inc., 34 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
8
|
Feo A, Stradiotto E, Sacconi R, Menean M, Querques G, Romano MR. Subretinal hyperreflective material in retinal and chorioretinal disorders: A comprehensive review. Surv Ophthalmol 2024; 69:362-377. [PMID: 38160737 DOI: 10.1016/j.survophthal.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
Subretinal hyperreflective material (SHRM) is a common and remarkable optical coherence tomography (OCT) biomarker whose importance is emerging in several retinal and chorioretinal diseases, including age-related macular degeneration, central serous chorioretinopathy, polypoidal choroidal vasculopathy, pathologic myopia, posterior uveitis, vitelliform lesions and macular dystrophies, and rarer disorders. Multimodal imaging, also thanks to the introduction of OCT angiography, allowed a deeper characterisation of SHRM components and its morphological changes after treatment, suggesting its usefulness in clinical practice. We discuss and summarize the nature, multimodal imaging characteristics, and prognostic and predictive significance of SHRM in the different retinal and choroidal disorders in which it has been described.
Collapse
Affiliation(s)
- Alessandro Feo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy.
| | - Elisa Stradiotto
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy.
| | - Riccardo Sacconi
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Matteo Menean
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Giuseppe Querques
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Mario R Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, Bergamo, Italy.
| |
Collapse
|
9
|
Toprak G, Ulaş F, Kaymaz A, Soydan A, Kaplan A, Alkan Y, Özdemir B, Bayrak A. Evaluation and comparison of optical coherence tomography angiography (OCTA) parameters in normal and moderate myopic individuals. Photodiagnosis Photodyn Ther 2024; 46:104077. [PMID: 38582391 DOI: 10.1016/j.pdpdt.2024.104077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVE The objective of this study was to evaluate and compare Optical Coherence Tomography Angiography (OCTA) parameters in patients with moderate myopia and healthy individuals retrospectively. METHODS A total of 80 male individuals aged 18-20 years were included in the study with 40 moderate myopic and 40 healthy persons. All participants underwent detailed ocular examination including refraction, intraocular pressure (IOP), visual acuity, biomicroscopy, OCTA measurement and optic biometry measurement. Retinal, retinal nerve fiber layer and choroidal layer thicknesses were evaluated in µm with the help of the software available in the OCTA device. RESULTS The mean axial length (24.32 ± 0.53 mm) was statistically significantly higher in the moderate myopic group (24.32 mm) compared to the healthy group (23.33 ± 0.61 mm) (p < 0.001). Spherical equivalent (SE) was found as -3.79 ± 0.91 D in the moderate myopic group and -0.22 ± 0.32 D in the healthy group (p < 0.05). The mean superficial foveal mean density (FovSupMVD) and the mean deep foveal mean density (FovDepMVD) were statistically significantly lower in the moderate myopic group than in the healthy group (both, p < 0.001). The mean retinal temporal thickness (RTt) was statistically significantly lower in the moderate myopic group (p = 0.017). There was a mild negative correlation between axial length and FovSupMVD, FovDepMVD in myopes. In axial length ROC analysis, the cutoff value for moderate myopes was found to be 24.15 mm. Mean superficial foveal mean density (FovSupMVD) and mean deep foveal mean density (FovDepMVD), mean retinal temporal thickness (RTt) were significantly lower in the group above 24.15 mm axial length compared to the group below 24.15 mm axial length (all three, p < 0.001). Foveal avascular zone was significantly higher in the group above 24.15 mm axial length (p = 0.016) CONCLUSION: The results of our study indicate that the mean axial length and spherical equivalent were significantly higher, while retinal temporal thickness, the mean superficial foveal mean density and the mean deep foveal mean density were significantly lower in patients with myopia up to -6.0 D compared to the healthy individuals.
Collapse
Affiliation(s)
- Güvenç Toprak
- Department of Ophthalmology, Faculty of Medicine, Abant Izzet Baysal University, Bolu 14030, Turkey.
| | - Fatih Ulaş
- Department of Ophthalmology, Faculty of Medicine, Abant Izzet Baysal University, Bolu 14030, Turkey
| | - Abdulgani Kaymaz
- Department of Ophthalmology, Faculty of Medicine, Abant Izzet Baysal University, Bolu 14030, Turkey
| | - Adem Soydan
- Department of Ophthalmology, Faculty of Medicine, Abant Izzet Baysal University, Bolu 14030, Turkey
| | - Abdulfatih Kaplan
- Department of Ophthalmology, Faculty of Medicine, Abant Izzet Baysal University, Bolu 14030, Turkey
| | - Yunus Alkan
- Department of Ophthalmology, Mardin Derik State Hospital, Mardin 47800, Turkey
| | - Buse Özdemir
- Department of Ophthalmology, Faculty of Medicine, Kırıkkale University, Kırıkkale 71450, Turkey
| | - Abdullah Bayrak
- Macuria, Die Makulaxperten Augenpraxis, Meckenbeuren 88047, Germany
| |
Collapse
|
10
|
Valentín-Bravo FJ, Stanga PE, Reinstein UI, Stanga SEF, Martínez-Tapia SA, Pastor-Idoate S. Silicone oil emulsification: A literature review and role of widefield imaging and ultra-widefield imaging with navigated central and peripheral optical coherence tomography technology. Saudi J Ophthalmol 2024; 38:112-122. [PMID: 38988778 PMCID: PMC11232747 DOI: 10.4103/sjopt.sjopt_193_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 07/12/2024] Open
Abstract
Silicone oil (SO) emulsification is a significant concern in vitreoretinal surgery, leading to various complications. Despite the high prevalence of SO emulsification within the eye, there is currently no standardized method for its early detection. The recent introduction of widefield (WF) imaging and ultra-WF (UWF) imaging with navigated central and peripheral optical coherence tomography (OCT) techniques have shown promising results in providing high-resolution images of the peripheral vitreous, vitreoretinal interface, retina, and choroid. This enhanced visualization capability enables the early identification of emulsified SO droplets, facilitating a proactive therapeutic approach, and mitigating associated adverse events. This comprehensive literature review aims to provide an updated overview of the topic, focusing on the role of WFimaging and UWF imaging and navigated central and peripheral swept-source OCT (SS-OCT) in the early detection and management of SO emulsification. The review discusses the current understanding of SO emulsification, its associated complications, and the limitations of existing detection methods. In addition, it highlights the potential of WF and UWF imaging and peripheral OCT as advanced imaging modalities for improved visualization of SO emulsification. This review serves as a valuable resource for clinicians and researchers, providing insights into the latest advancements in the field of vitreoretinal surgery and the promising role of WF imaging and UWF imaging and navigated central and peripheral SS-OCT in the management of SO.
Collapse
Affiliation(s)
| | - Paulo E. Stanga
- The Retina Clinic London, London, UK
- Department of Ophthalmology, Institute of Ophthalmology, University College London, London, UK
| | | | | | | | - Salvador Pastor-Idoate
- Department of Ophthalmology, Clinical University Hospital, Valladolid, Spain
- Department of Ophthalmology, Ioba Eye Institute, University of Valladolid, Valladolid, Spain
- Networks of Cooperative Research Oriented to Health Results (RICORS), National Institute of Health Carlos III, ISCIII, Madrid, Spain
| |
Collapse
|
11
|
Zhang HD, Zhang L, Han F, Lin N, Jiang W. Visualized analysis of research on myopic traction maculopathy based on CiteSpace. Int J Ophthalmol 2023; 16:2117-2124. [PMID: 38111942 PMCID: PMC10700085 DOI: 10.18240/ijo.2023.12.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/01/2023] [Indexed: 12/20/2023] Open
Abstract
AIM To analyze the global scientific output concerning myopic traction maculopathy (MTM) and to summarize the research frontiers and hot topics of MTM related researches. METHODS Data were collected for bibliometric and visualization analyses from Web of Science (WOS) Core Collection. Exported records were analyzed for titles, publication years, research institutions, journal names, authors, keywords, and abstracts using CiteSpace software version 6.1. RESULTS A total of 839 related studies were analyzed, the publication volume increased annually, with Asia the most active region of MTM research. Optical coherence tomography angiography, optical coherence tomography, macular hole, high myopia, macular buckling were identified as the focus of the current research. Progression, association, classification and shape were identified as the major research frontiers. CONCLUSION MTM is a major cause of visual loss in pathological myopic eyes. During the preceding 17y, the number of annual publications in MTM research increased gradually. Studies on the progression nature of MTM, genome-wide association study and proper classification of MTM might still be the frontiers of MTM researches.
Collapse
Affiliation(s)
- Heng-Di Zhang
- Department of Ophthalmology, the General Hospital of Western Theater Command, PLA, Chengdu 610083, Sichuan Province, China
| | - Ling Zhang
- Department of Oncology, the General Hospital of Western Theater Command, PLA, Chengdu 610083, Sichuan Province, China
| | - Fei Han
- Department of Ophthalmology, the General Hospital of Western Theater Command, PLA, Chengdu 610083, Sichuan Province, China
| | - Ning Lin
- Department of Clinical Nutrition, the General Hospital of Western Theater Command, PLA, Chengdu 610083, Sichuan Province, China
| | - Wei Jiang
- Department of Ophthalmology, the General Hospital of Western Theater Command, PLA, Chengdu 610083, Sichuan Province, China
| |
Collapse
|
12
|
Alhalafi AM. Applications of Artificial Intelligence in Choroid Visualization for Myopia: A Comprehensive Scoping Review. Middle East Afr J Ophthalmol 2023; 30:189-202. [PMID: 39959595 PMCID: PMC11823532 DOI: 10.4103/meajo.meajo_154_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 02/18/2025] Open
Abstract
Numerous artificial intelligence (AI) models, including deep learning techniques, are being developed to segment choroids in optical coherence tomography (OCT) images. However, there is a need for consensus on which specific models to use, requiring further synthesis of their efficacy and role in choroid visualization in myopic patients. A systematic literature search was conducted on three main databases (PubMed, Web of Science, and Scopus) using the search terms: "Machine learning" OR "Artificial Intelligence" OR "Deep learning" AND "Myopia" AND "Choroid" OR "Choroidal" from inception to February 2024 removing duplicates. A total of 12 studies were included. The populations included myopic patients with varying degrees of myopia. The AI models applied were primarily deep learning models, including U-Net with a bidirectional Convolutional Long Short-Term Memory module, LASSO regression, Attention-based Dense U-Net network, ResNeSt101 architecture training five models, and Mask Region-Based Convolutional Neural Network. The reviewed AI models demonstrated high diagnostic accuracy, including sensitivity, specificity, and area under the curve values, in identifying and assessing myopia-related changes. Various biomarkers were assessed, such as choroidal thickness, choroidal vascularity index, choroidal vessel volume, luminal volume, and stromal volume, providing valuable insights into the structural and vascular changes associated with the condition. The integration of AI models in ophthalmological imaging represents a significant advancement in the diagnosis and management of myopia. The high diagnostic accuracy and efficiency of these models underscore their potential to revolutionize myopia care, improving patient outcomes through early detection and precise monitoring of disease progression. Future studies should focus on standardizing AI methodologies and expanding their application to broader clinical settings to fully realize their potential in ophthalmology.
Collapse
Affiliation(s)
- Ali M. Alhalafi
- Department of Ophthalmology, Security Forces Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Chun RKM, Zhang H, Liu Z, Tse DYY, Zhou Y, Lam CSY, To CH. Defocus incorporated multiple segments (DIMS) spectacle lenses increase the choroidal thickness: a two-year randomized clinical trial. EYE AND VISION (LONDON, ENGLAND) 2023; 10:39. [PMID: 37715201 PMCID: PMC10502972 DOI: 10.1186/s40662-023-00356-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Myopia control interventions, such as defocus incorporated multiple segments (DIMS) spectacle lenses, have been adopted in school-aged children to reduce the prevalence of myopia and its complications. This study aimed to investigate the effect of DIMS spectacle lenses on subfoveal choroidal thickness (SfChT) over a period of two years, as the choroidal response to myopic control is a crucial factor in exploring its potential effect on predicting myopia progression. METHODS This study involved a secondary analysis of our previous randomized clinical trial. Myopic school-aged children aged 8-13 years were recruited in a two-year study investigating the effect of DIMS spectacle lenses on myopia progression. The treated group received DIMS spectacle lenses (n = 78), while the control group was treated with a pair of single vision (SV) spectacle lenses (n = 80). SfChT was monitored at 1 week, 1, 3, 6, 12, 18 and 24 months post lens wear using spectral-domain optical coherence tomography and a custom made auto-segmentation algorithm utilizing convolutional neural networks. RESULTS SfChT increased significantly after one week of DIMS spectacle lens wear compared to those wearing SV spectacle lenses (adjusted mean change relative to baseline ± SEM at one week; DIMS vs. SV, 6.75 ± 1.52 µm vs. - 3.17 ± 1.48 µm; P < 0.0001, general linear model). The thickness of choroid increased to 13.64 ± 2.62 µm after 12 months of DIMS lens wear while the choroid thinned in SV group (- 9.46 ± 2.55 µm). Choroidal changes demonstrated a significant negative association with axial elongation over two years in both the DIMS and SV groups. Choroidal change at three months significantly predicted the changes in AL at 12 months after controlling the effect of age and gender. CONCLUSIONS Our study demonstrated a significant choroidal thickening in response to myopic defocus incorporated in a spectacle lens after one week of lens wear, sustained over the two-year study period. The results suggested that choroidal changes at three months may help predict changes in axial length after one year. Trial registration ClinicalTrials.gov. Myopia control with the multi-segment lens. NCT02206217. Registered 29 July 2014, https://clinicaltrials.gov/ct2/show/study/NCT02206217.
Collapse
Affiliation(s)
- Rachel Ka Man Chun
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong, China.
| | - Hanyu Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Zhengji Liu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Dennis Yan Yin Tse
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong, China
| | - Yongjin Zhou
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- School of Biomedical Engineering, Department of Medical Electronics, Shenzhen University, Shenzhen, China
| | - Carly Siu Yin Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong, China
| | - Chi Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong, China
| |
Collapse
|
14
|
Li X, Jing R, Li X, Wang Z. Evaluation of macular neovascularization activity in pathological myopia: a comparison between optical coherence tomography and OCT-angiography. Front Med (Lausanne) 2023; 10:1166271. [PMID: 37780554 PMCID: PMC10538537 DOI: 10.3389/fmed.2023.1166271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
Purpose The purpose of this study was to suggest a novel approach to assessing the activity of macular neovascularization (MNV) in pathological myopia (PM) by comparing optical coherence tomography (OCT) with OCT-angiography (OCT-A). Methods The Zeiss Cirrus HD-5000 was used to obtain OCT and OCT-A images of PM-MNV. The objective was to examine the characteristics of PM-MNV lesions and investigate the relationship between PM-MNV activity and changes in retinal structure in 54 patients (54 eyes). To analyze the OCT parameters associated with PM-MNV activity and their clinical significance in terms of sensitivity and specificity, we used OCT-A as a reference. Results This study included 72 patients (72 eyes), of whom 54 had good image quality and were considered for analysis. The study evaluated various OCT characteristics of MNV lesions, including the elevation of an external limiting membrane (ELM), ellipsoidal zone (EZ), retinal pigment epithelium (RPE) elevation, and EZ/RPE interruption, to identify possible parameters associated with PM-MNV activity. The interobserver consistency was found to be almost perfect. In the evaluation of PM-MNV activity, the sensitivity of ELM elevation, EZ interruption, and RPE interruption was found to be 66.7% (low), 88.4% (high), and 95.6% (high), respectively. However, the specificity was found to be 71.4% (moderate), 71.4% (moderate), and 25.4% (poor), respectively. This indicates that the current evaluation methods are not accurately assessing PM-MNV activity. We developed a new comprehensive method that used EZ interruption as the primary parameter and ELM elevation and RPE interruption as secondary parameters to evaluate PM-MNV activity with a sensitivity of 97.8% and a specificity of 85.4%. Conclusion In PM-MNV, a novel comprehensive diagnostic method combining EZ interruption, ELM elevation, and RPE interruption might be a valuable indicator to evaluate PM-MNV activity.
Collapse
Affiliation(s)
- Xin Li
- Department of Ophthalmology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ruixia Jing
- Department of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Xue Li
- Department of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Zhen Wang
- Department of Ophthalmology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
15
|
Wu Y, Feng Y, Yang J, Fan H, Yu Z, Xie X, Dai Y, Huang X, Li W. Effects of exogenous retinoic acid on ocular parameters in Guinea pigs with form deprivation myopia. Front Cell Dev Biol 2023; 11:1160897. [PMID: 37020463 PMCID: PMC10068790 DOI: 10.3389/fcell.2023.1160897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Aim: Myopia is a common chronic eye disease, this study is to investigate the effects of exogenous retinoic acid (RA) on intraocular parameters, especially choroidal thickness (CT) and retinal thickness (RT), in guinea pigs with form deprivation myopia (FDM).Methods: A total of 80 male guinea pigs were divided randomly into 4 groups: Control, FDM, FDM + RA, and FDM + Citral groups. The FDM + RA group was given 24 mg/kg RA dissolved in 0.4 mL peanut oil; the FDM + Citral group was given citral 445 mg/kg dissolved in 0.4 mL peanut oil; The other two groups were given 0.4 mL peanut oil. After 4 weeks, the refractive error (RE), axial length (AL), and intraocular pressure (IOP) of all guinea pigs were measured, and the parameters of RT and CT were obtained using enhanced depth imaging optical coherence tomography (EDI-OCT).Results: After 4 weeks, both the RE and AL in the FDM and FDM + RA groups were increased, and the RT and CT in both groups were smaller than those in the Control group (p < 0.05). Only the IOP of the right eye in the FDM + RA group increased significantly (p < 0.05). The RT of the right eye of the 4 groups was compared: Control group > FDM + Citral group > FDM group > FDM + RA group. Compared with the RT of the left eye and the right eye among the 4 groups, the RT of the right eye in the FDM and FDM + RA groups was significantly less than that in the left eye (p < 0.05). Moreover, the CT of the right eye in the Control group was greater than that in the other three groups (p < 0.0001). There was no significant difference in the CT among the FDM, FDM + RA, and FDM + Citral groups (p > 0.05). In contrast to the RT results, the CT results of the left and right eyes in the FDM + Citral group showed statistically significant differences (p < 0.05).Conclusion: RA participates in the progression of FDM as a regulatory factor. Exogenous RA can increase the RE, AL, and IOP of FDM guinea pigs, and might aggravate the retinal thinning of FDM guinea pigs. Citral can inhibit these changes, but RA might not affect the thickness of the choroid.
Collapse
Affiliation(s)
- Yajun Wu
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Shanghai Aier Ophthalmology Hospital, Shanghai, China
- Shanghai Aier Eye Institute, Shanghai, China
| | - Yuliang Feng
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Shanghai Aier Ophthalmology Hospital, Shanghai, China
- Shanghai Aier Eye Institute, Shanghai, China
| | - Jiasong Yang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Shanghai Aier Ophthalmology Hospital, Shanghai, China
- Shanghai Aier Eye Institute, Shanghai, China
| | - Hua Fan
- Department of Ophthalmology, Shanghai Aier Ophthalmology Hospital, Shanghai, China
- Shanghai Aier Eye Institute, Shanghai, China
| | - Zitong Yu
- Department of Ophthalmology, Shanghai Aier Ophthalmology Hospital, Shanghai, China
- Shanghai Aier Eye Institute, Shanghai, China
| | - Xiaolin Xie
- Department of Ophthalmology, Shanghai Aier Ophthalmology Hospital, Shanghai, China
- Shanghai Aier Eye Institute, Shanghai, China
| | - Yumeng Dai
- Department of Ophthalmology, Shanghai Aier Ophthalmology Hospital, Shanghai, China
- Shanghai Aier Eye Institute, Shanghai, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- *Correspondence: Wensheng Li, ; Xin Huang,
| | - Wensheng Li
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Shanghai Aier Ophthalmology Hospital, Shanghai, China
- Shanghai Aier Eye Institute, Shanghai, China
- *Correspondence: Wensheng Li, ; Xin Huang,
| |
Collapse
|