1
|
Putra HG, Surja SS, Widowati TA, Ali S, Kaisar MMM. SARS-CoV-2 RT-LAMP in saliva: enhancing the results via a combination of cooling and specimen dilution procedure. Virusdisease 2024; 35:293-301. [PMID: 39071878 PMCID: PMC11269541 DOI: 10.1007/s13337-024-00870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/11/2024] [Indexed: 07/30/2024] Open
Abstract
Colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a potential and relatively simple rapid diagnostics method for COVID-19 detection. This study aims to evaluate and optimize the RT-LAMP performance on saliva specimens based on a commercially available kit.Modifications on an established protocol (Protocol A) were used, including Proteinase K supplementation (Protocol B); pre-treatment using nuclease-free water and proteinase K (Protocol C); Saliva cooling (Protocol D); saliva dilution after pre-treatment (Protocol E); lastly a combination of saliva cooling and dilution (Protocol F). Protocol performances were evaluated by comparing success rates (SR), diagnostic accuracy (DA), sensitivity, specificity, and predictive values. Additionally, a correlation between the Ct value by RT-qPCR and RT-LAMP performance was analyzed.. A total of 106 specimens were used in this study. Protocols B and C showed 100% unreadable results, therefore were paused. Protocol F showed the highest SR (87.65%) compared to other protocols, with a slight compromise to DA (81.69%), sensitivity (57.14%), specificity (97.67%), PPV (94.12%), and NPV (77.78%). In the sub-analysis of the low Ct value group (Ct < 30), Protocol F demonstrated a higher success rate (86.57%) compared to protocol A (64.18%); increased 3.08% sensitivity and 2.42% NPV; comparable DA; minor reduction in specificity (A = 100%; F = 97.67%) and PPV (A = 100%; F = 92.31%). A combination of saliva cooling-dilution substantially increased the tested kit's success rate, despite a slight decrease in specificity and PPV. Findings confirmed the saliva cooling-dilution procedure was beneficial to the test's SR, sensitivity, and NPV in the low Ct value group. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00870-1.
Collapse
Affiliation(s)
- Henry Gotama Putra
- Undergraduate Study Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440 Indonesia
| | - Sem Samuel Surja
- Department of Parasitology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440 Indonesia
| | - Tria Asri Widowati
- Department of Parasitology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440 Indonesia
| | - Soegianto Ali
- Department of Medical Biology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440 Indonesia
- Present Address: Master in Biomedicine Study Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440 Indonesia
| | - Maria Mardalena Martini Kaisar
- Department of Parasitology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440 Indonesia
- Present Address: Master in Biomedicine Study Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440 Indonesia
| |
Collapse
|
2
|
Armani Khatibi E, Farshbaf Moghimi N, Rahimpour E. COVID-19: An overview on possible transmission ways, sampling matrices and diagnosis. BIOIMPACTS : BI 2024; 14:29968. [PMID: 39493896 PMCID: PMC11530968 DOI: 10.34172/bi.2024.29968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/17/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
COVID-19 is an RNA virus belonging to the SARS family of viruses and includes a wide range of symptoms along with effects on other body organs in addition to the respiratory system. The high speed of transmission, severe complications, and high death rate caused scientists to focus on this disease. Today, many different investigation types are performed on COVID-19 from various points of view in the literature. This review summarizes most of them to provide a useful guideline for researchers in this field. After a general introduction, this review is divided into three parts. In the first one, various transmission ways COVID-19 are classified and explained in detail. The second part reviews the used biological samples for the detection of virus and the final section describes the various methods reported for the diagnosis of COVID-19 in various biological matrices.
Collapse
Affiliation(s)
- Elina Armani Khatibi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Nastaran Farshbaf Moghimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Sagong H, Jung C. Development of extension-mediated self-folding isothermal amplification technology for SARS-CoV-2 diagnosis. Biosens Bioelectron 2023; 237:115516. [PMID: 37473546 DOI: 10.1016/j.bios.2023.115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
The coronavirus disease (COVID-19) pandemic has highlighted the importance of rapid and accurate diagnosis, and loop-mediated isothermal amplification (LAMP) has become a popular method because of its powerful amplification ability using a simple instrument such as a heater or water bath. However, LAMP has limitations such as the complexity of primer design and the difficulty of designing sequence-specific probes, leading to non-specific amplicons and false-positive results. To overcome these limitations, we developed a novel isothermal amplification system called the Extension-mediated self-folding Isothermal amplification Technology (ExIT). ExIT uses a newly designed, self-folding primer (SP) with two key functions. Hairpin structures are formed when the extended strand of the SP hybridizes, exposing the priming site for continuous binding of the new SP. This results in exponential amplification with only two primers, unlike conventional LAMP primer systems. Additionally, an unnatural base was introduced into the SP, which terminated the extension of polymerase and generated a ssDNA amplicon. This makes it easier to design and apply probes, reducing the possibility of false-positive results even if non-specific amplicons are produced. Through this strategy, we confirmed a sensitivity of 90 copies (3.6 copies/μL) and verified the specificity by testing for the presence or absence of non-complementary targets. Therefore, the validation of the ExIT was completed. In conclusion, ExIT will be key to solving the complexity of conventional LAMP design and offers great potential for successfully introducing sequence-specific probes to improve false positives.
Collapse
Affiliation(s)
- Harim Sagong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Cheulhee Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Hongjaisee S, Kham-Kjing N, Musikul P, Daengkaokhew W, Kongson N, Guntala R, Jaiyapan N, Kline E, Panpradist N, Ngo-Giang-Huong N, Khamduang W. A Single-Tube Colorimetric Loop-Mediated Isothermal Amplification for Rapid Detection of SARS-CoV-2 RNA. Diagnostics (Basel) 2023; 13:3040. [PMID: 37835783 PMCID: PMC10572433 DOI: 10.3390/diagnostics13193040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Since SARS-CoV-2 is a highly transmissible virus, a rapid and accurate diagnostic method is necessary to prevent virus spread. We aimed to develop and evaluate a new rapid colorimetric reverse transcription loop--mediated isothermal amplification (RT-LAMP) assay for SARS-CoV-2 detection in a single closed tube. Nasopharyngeal and throat swabs collected from at-risk individuals testing for SARS-CoV-2 were used to assess the sensitivity and specificity of a new RT-LAMP assay against a commercial qRT-PCR assay. Total RNA extracts were submitted to the RT-LAMP reaction under optimal conditions and amplified at 65 °C for 30 min using three sets of specific primers targeting the nucleocapsid gene. The reaction was detected using two different indicator dyes, hydroxynaphthol blue (HNB) and cresol red. A total of 82 samples were used for detection with HNB and 94 samples with cresol red, and results were compared with the qRT-PCR assay. The sensitivity of the RT-LAMP-based HNB assay was 92.1% and the specificity was 93.2%. The sensitivity of the RT-LAMP-based cresol red assay was 80.3%, and the specificity was 97%. This colorimetric feature makes this assay highly accessible, low-cost, and user-friendly, which can be deployed for massive scale-up and rapid diagnosis of SARS-CoV-2 infection, particularly in low-resource settings.
Collapse
Affiliation(s)
- Sayamon Hongjaisee
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.K.-K.); (N.P.); (N.N.-G.-H.)
| | - Nang Kham-Kjing
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.K.-K.); (N.P.); (N.N.-G.-H.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.M.); (W.D.); (N.K.); (N.J.)
| | - Piyagorn Musikul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.M.); (W.D.); (N.K.); (N.J.)
| | - Wannaporn Daengkaokhew
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.M.); (W.D.); (N.K.); (N.J.)
| | - Nuntita Kongson
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.M.); (W.D.); (N.K.); (N.J.)
| | | | - Nitipoom Jaiyapan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.M.); (W.D.); (N.K.); (N.J.)
| | - Enos Kline
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| | - Nuttada Panpradist
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.K.-K.); (N.P.); (N.N.-G.-H.)
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Nicole Ngo-Giang-Huong
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.K.-K.); (N.P.); (N.N.-G.-H.)
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Agropolis University Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Pour le Développement (IRD), 34394 Montpellier, France
- International Joint Laboratory PRESTO, Chiang Mai 50200, Thailand
| | - Woottichai Khamduang
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.K.-K.); (N.P.); (N.N.-G.-H.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.M.); (W.D.); (N.K.); (N.J.)
- International Joint Laboratory PRESTO, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Zhang Y, Clarke SP, Wu H, Li W, Zhou C, Lin K, Wang J, Wang J, Liang Y, Wang X, Wang L. A comprehensive overview on the transmission, pathogenesis, diagnosis, treatment, and prevention of SARS-CoV-2. J Med Virol 2023; 95:e28776. [PMID: 37212261 DOI: 10.1002/jmv.28776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a single positive-strand RNA virus that is responsible for the current pandemic that the world has been facing since 2019. The primary route of transmission of SARS-CoV-2 is through respiratory tract transmission. However, other transmission routes such as fecal-oral, vertical transmission, and aerosol-eye also exist. In addition, it has been found that the pathogenesis of this virus involves the binding of the virus's S protein to its host cell surface receptor angiotensin-converting enzyme 2, which results in the subsequent membrane fusion that is required for SARS-CoV-2 to replicate and complete its entire life. The clinical symptoms of patients infected with SARS-CoV-2 can range from asymptomatic to severe. The most common symptoms seen include fever, dry cough, and fatigue. Once these symptoms are observed, a nucleic acid test is done using reverse transcription-polymerase chain reaction. This currently serves as the main confirmatory tool for COVID-19. Despite the fact that no cure has been found for SARS-CoV-2, prevention methods such as vaccines, specific facial mask, and social distancing have proven to be quite effective. It is imperative to have a complete understanding of the transmission and pathogenesis of this virus. To effectively develop new drugs as well as diagnostic tools, more knowledge about this virus would be needed.
Collapse
Affiliation(s)
- Yiting Zhang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | | | - Huanwu Wu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wenli Li
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Chang Zhou
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Kang Lin
- Department of Basic Medical Sciences, Morphological Experimental Center, Anhui Medical University, Hefei, Anhui, China
| | - Jiawen Wang
- Department of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jinzhi Wang
- Department of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ying Liang
- Department of The Second Clinical School of Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xin Wang
- Department of Chemistry, Anhui Medical University, Hefei, Anhui, China
| | - Linding Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Kuzan A, Tabakov I, Madej L, Mucha A, Fulawka L. What to Do if the qPCR Test for SARS-CoV-2 or Other Pathogen Lacks Endogenous Internal Control? A Simple Test on Housekeeping Genes. Biomedicines 2023; 11:biomedicines11051337. [PMID: 37239008 DOI: 10.3390/biomedicines11051337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Some of the products for the molecular diagnosis of infections do not have an endogenous internal control, and this is necessary to ensure that the result is not a false negative. The aim of the project was to design a simple low-cost RT-qPCR test that can confirm the expression of basic metabolism proteins, thus confirming the quality of genetic material for molecular diagnostic tests. Two successful equivalent qPCR assays for the detection of the GADPH and ACTB genes were obtained. The course of standard curves is logarithmic, with a very high correlation coefficient R2 within the range of 0.9955-0.9956. The reaction yield was between 85.5 and 109.7%, and the detection limit (LOD) with 95% positive probability was estimated at 0.0057 ng/µL for GAPDH and 0.0036 ng/µL for ACTB. These tests are universal because they function on various types of samples (swabs, cytology, etc.) and can complement the diagnosis of SARS-CoV-2 and other pathogens, as well as potentially oncological diagnostics.
Collapse
Affiliation(s)
- Aleksandra Kuzan
- Molecular Pathology Centre Cellgen, 50-353 Wroclaw, Poland
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Ivo Tabakov
- Molecular Pathology Centre Cellgen, 50-353 Wroclaw, Poland
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Lukasz Madej
- Molecular Pathology Centre Cellgen, 50-353 Wroclaw, Poland
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
| | - Anna Mucha
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
| | - Lukasz Fulawka
- Molecular Pathology Centre Cellgen, 50-353 Wroclaw, Poland
| |
Collapse
|
7
|
Saxena A, Rai P, Mehrotra S, Baby S, Singh S, Srivastava V, Priya S, Sharma SK. Development and Clinical Validation of RT-LAMP-Based Lateral-Flow Devices and Electrochemical Sensor for Detecting Multigene Targets in SARS-CoV-2. Int J Mol Sci 2022; 23:13105. [PMID: 36361893 PMCID: PMC9658514 DOI: 10.3390/ijms232113105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 04/06/2025] Open
Abstract
Consistently emerging variants and the life-threatening consequences of SARS-CoV-2 have prompted worldwide concern about human health, necessitating rapid and accurate point-of-care diagnostics to limit the spread of COVID-19. Still, However, the availability of such diagnostics for COVID-19 remains a major rate-limiting factor in containing the outbreaks. Apart from the conventional reverse transcription polymerase chain reaction, loop-mediated isothermal amplification-based (LAMP) assays have emerged as rapid and efficient systems to detect COVID-19. The present study aims to develop RT-LAMP-based assay system for detecting multiple targets in N, ORF1ab, E, and S genes of the SARS-CoV-2 genome, where the end-products were quantified using spectrophotometry, paper-based lateral-flow devices, and electrochemical sensors. The spectrophotometric method shows a LOD of 10 agµL-1 for N, ORF1ab, E genes and 100 agµL-1 for S gene in SARS-CoV-2. The developed lateral-flow devices showed an LOD of 10 agµL-1 for all four gene targets in SARS-CoV-2. An electrochemical sensor developed for N-gene showed an LOD and E-strip sensitivity of log 1.79 ± 0.427 pgµL-1 and log 0.067 µA/pg µL-1/mm2, respectively. The developed assay systems were validated with the clinical samples from COVID-19 outbreaks in 2020 and 2021. This multigene target approach can effectively detect emerging COVID-19 variants using combination of various analytical techniques at testing facilities and in point-of-care settings.
Collapse
Affiliation(s)
- Apoorva Saxena
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Pawankumar Rai
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Srishti Mehrotra
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Samiya Baby
- System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Suman Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Agrionics Post Harvest Material Science and Sensor Applications, CSIR-Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Vikas Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Smriti Priya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Sandeep K. Sharma
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|