1
|
Rajaraman S, Xue Z, Antani S. Editorial on Special Issue "Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care". Diagnostics (Basel) 2024; 14:1984. [PMID: 39272768 PMCID: PMC11393920 DOI: 10.3390/diagnostics14171984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
In an era of rapid advancements in artificial intelligence (AI) technologies, particularly in medical imaging and natural language processing, strategic efforts to leverage AI's capabilities in analyzing complex medical data and integrating it into clinical workflows have emerged as a key driver of innovation in healthcare [...].
Collapse
Affiliation(s)
- Sivaramakrishnan Rajaraman
- Computational Health Research Branch, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Zhiyun Xue
- Computational Health Research Branch, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Sameer Antani
- Computational Health Research Branch, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
2
|
Stamate E, Piraianu AI, Ciobotaru OR, Crassas R, Duca O, Fulga A, Grigore I, Vintila V, Fulga I, Ciobotaru OC. Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years. Diagnostics (Basel) 2024; 14:1103. [PMID: 38893630 PMCID: PMC11172021 DOI: 10.3390/diagnostics14111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) can radically change almost every aspect of the human experience. In the medical field, there are numerous applications of AI and subsequently, in a relatively short time, significant progress has been made. Cardiology is not immune to this trend, this fact being supported by the exponential increase in the number of publications in which the algorithms play an important role in data analysis, pattern discovery, identification of anomalies, and therapeutic decision making. Furthermore, with technological development, there have appeared new models of machine learning (ML) and deep learning (DP) that are capable of exploring various applications of AI in cardiology, including areas such as prevention, cardiovascular imaging, electrophysiology, interventional cardiology, and many others. In this sense, the present article aims to provide a general vision of the current state of AI use in cardiology. RESULTS We identified and included a subset of 200 papers directly relevant to the current research covering a wide range of applications. Thus, this paper presents AI applications in cardiovascular imaging, arithmology, clinical or emergency cardiology, cardiovascular prevention, and interventional procedures in a summarized manner. Recent studies from the highly scientific literature demonstrate the feasibility and advantages of using AI in different branches of cardiology. CONCLUSIONS The integration of AI in cardiology offers promising perspectives for increasing accuracy by decreasing the error rate and increasing efficiency in cardiovascular practice. From predicting the risk of sudden death or the ability to respond to cardiac resynchronization therapy to the diagnosis of pulmonary embolism or the early detection of valvular diseases, AI algorithms have shown their potential to mitigate human error and provide feasible solutions. At the same time, limits imposed by the small samples studied are highlighted alongside the challenges presented by ethical implementation; these relate to legal implications regarding responsibility and decision making processes, ensuring patient confidentiality and data security. All these constitute future research directions that will allow the integration of AI in the progress of cardiology.
Collapse
Affiliation(s)
- Elena Stamate
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (E.S.); (V.V.)
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
| | - Alin-Ionut Piraianu
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
| | - Oana Roxana Ciobotaru
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Railway Hospital Galati, 800223 Galati, Romania
| | - Rodica Crassas
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Oana Duca
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Ana Fulga
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei Street, 800578 Galati, Romania
| | - Ionica Grigore
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Vlad Vintila
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (E.S.); (V.V.)
- Clinical Department of Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 37 Dionisie Lupu Street, 4192910 Bucharest, Romania
| | - Iuliu Fulga
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei Street, 800578 Galati, Romania
| | - Octavian Catalin Ciobotaru
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Railway Hospital Galati, 800223 Galati, Romania
| |
Collapse
|
3
|
Fukuzawa F, Yanagita Y, Yokokawa D, Uchida S, Yamashita S, Li Y, Shikino K, Tsukamoto T, Noda K, Uehara T, Ikusaka M. Importance of Patient History in Artificial Intelligence-Assisted Medical Diagnosis: Comparison Study. JMIR MEDICAL EDUCATION 2024; 10:e52674. [PMID: 38602313 PMCID: PMC11024399 DOI: 10.2196/52674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 04/12/2024]
Abstract
Background Medical history contributes approximately 80% to a diagnosis, although physical examinations and laboratory investigations increase a physician's confidence in the medical diagnosis. The concept of artificial intelligence (AI) was first proposed more than 70 years ago. Recently, its role in various fields of medicine has grown remarkably. However, no studies have evaluated the importance of patient history in AI-assisted medical diagnosis. Objective This study explored the contribution of patient history to AI-assisted medical diagnoses and assessed the accuracy of ChatGPT in reaching a clinical diagnosis based on the medical history provided. Methods Using clinical vignettes of 30 cases identified in The BMJ, we evaluated the accuracy of diagnoses generated by ChatGPT. We compared the diagnoses made by ChatGPT based solely on medical history with the correct diagnoses. We also compared the diagnoses made by ChatGPT after incorporating additional physical examination findings and laboratory data alongside history with the correct diagnoses. Results ChatGPT accurately diagnosed 76.6% (23/30) of the cases with only the medical history, consistent with previous research targeting physicians. We also found that this rate was 93.3% (28/30) when additional information was included. Conclusions Although adding additional information improves diagnostic accuracy, patient history remains a significant factor in AI-assisted medical diagnosis. Thus, when using AI in medical diagnosis, it is crucial to include pertinent and correct patient histories for an accurate diagnosis. Our findings emphasize the continued significance of patient history in clinical diagnoses in this age and highlight the need for its integration into AI-assisted medical diagnosis systems.
Collapse
Affiliation(s)
- Fumitoshi Fukuzawa
- Department of General Medicine, Chiba University Hospital, Chiba-shi, Japan
| | - Yasutaka Yanagita
- Department of General Medicine, Chiba University Hospital, Chiba-shi, Japan
| | - Daiki Yokokawa
- Department of General Medicine, Chiba University Hospital, Chiba-shi, Japan
| | - Shun Uchida
- Uchida Internal Medicine Clinic, Saitama-shi, Japan
| | - Shiho Yamashita
- Department of General Medicine, Chiba University Hospital, Chiba-shi, Japan
| | - Yu Li
- Department of General Medicine, Chiba University Hospital, Chiba-shi, Japan
| | - Kiyoshi Shikino
- Department of General Medicine, Chiba University Hospital, Chiba-shi, Japan
| | - Tomoko Tsukamoto
- Department of General Medicine, Chiba University Hospital, Chiba-shi, Japan
| | - Kazutaka Noda
- Department of General Medicine, Chiba University Hospital, Chiba-shi, Japan
| | - Takanori Uehara
- Department of General Medicine, Chiba University Hospital, Chiba-shi, Japan
| | - Masatomi Ikusaka
- Department of General Medicine, Chiba University Hospital, Chiba-shi, Japan
| |
Collapse
|