1
|
Bahadir HS, Keskin NB, Çakmak EŞK, Güneç G, Cesur Aydin K, Peker F. Patients' attitudes toward artificial intelligence in dentistry and their trust in dentists. Oral Radiol 2025; 41:52-59. [PMID: 39379636 DOI: 10.1007/s11282-024-00775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVES This study intended to evaluate patients' attitudes toward the use of AI in dental radiographic detection of occlusal caries and the impact of AI-based diagnosis on their trust in dentists. METHODS A total of 272 completed questionnaires were included in this study. In the first part of the study, approval was obtained from the patients, and data were collected about their socio-demographic characteristics. In the second part the 11-item Dentist Trust Scale was applied. In the third and fourth parts, there were questions about two clinical scenarios, the patients' knowledge of attitudes toward AI, and how the AI-based diagnosis had affected their trust. Evaluation was performed using a Likert-type scale. Data were analyzed with the Chi-square, one-way ANOVA, and ordinal logistic regression tests (p < 0.05). RESULTS The patients believed that "AI is useful" (3.86 ± 1.03) and were not afraid of the use of AI in dentistry (2.40 ± 1.05). Educational level was considerably related to the patients' attitudes to the use of AI for dental diagnostics (p < 0.05). The patients stated that "dentists are extremely thorough and careful" (4.39 ± 0.77). CONCLUSIONS The patients displayed a positive attitude to AI-based diagnosis in the dental field and appear to exhibit trust in dentists. The use of Al in routine clinical practice can provide important benefit to physicians as a clinical decision support system in dentistry and understanding patients' attitudes may allow dentists to shape AI-supported dentistry in the future.
Collapse
Affiliation(s)
- Hasibe Sevilay Bahadir
- Faculty of Dentistry, Department of Restorative Dentistry, Ankara Yıldırım Beyazıt University, Ankara, Turkey.
| | - Neslihan Büşra Keskin
- Faculty of Dentistry, Department of Endodontics, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Emine Şebnem Kurşun Çakmak
- Faculty of Dentistry, Department of Dentomaxillofacial Radiology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Gürkan Güneç
- Department of Endodontics, Health Sciences University Hamidiye Faculty of Dentistry, Istanbul, Turkey
| | - Kader Cesur Aydin
- Faculty of Dentistry, Department of Dentomaxillofacial Radiology, Istanbul Medipol University, Istanbul, Turkey
| | - Fatih Peker
- Faculty of Dentistry, Department of Dentomaxillofacial Radiology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
2
|
Surdu A, Budala DG, Luchian I, Foia LG, Botnariu GE, Scutariu MM. Using AI in Optimizing Oral and Dental Diagnoses-A Narrative Review. Diagnostics (Basel) 2024; 14:2804. [PMID: 39767164 PMCID: PMC11674583 DOI: 10.3390/diagnostics14242804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Artificial intelligence (AI) is revolutionizing the field of oral and dental healthcare by offering innovative tools and techniques for optimizing diagnosis, treatment planning, and patient management. This narrative review explores the current applications of AI in dentistry, focusing on its role in enhancing diagnostic accuracy and efficiency. AI technologies, such as machine learning, deep learning, and computer vision, are increasingly being integrated into dental practice to analyze clinical images, identify pathological conditions, and predict disease progression. By utilizing AI algorithms, dental professionals can detect issues like caries, periodontal disease and oral cancer at an earlier stage, thus improving patient outcomes.
Collapse
Affiliation(s)
- Amelia Surdu
- Department of Oral Diagnosis, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dana Gabriela Budala
- Department of Dentures, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Liliana Georgeta Foia
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitătii Street, 700115 Iasi, Romania
- St. Spiridon Emergency County Hospital, 700111 Iasi, Romania
| | - Gina Eosefina Botnariu
- Department of Internal Medicine II, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitătii Street, 700115 Iasi, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, St. Spiridon Emergency County Hospital, 700111 Iasi, Romania
| | - Monica Mihaela Scutariu
- Department of Oral Diagnosis, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
3
|
Üzen H, Fırat H. A hybrid approach based on multipath Swin transformer and ConvMixer for white blood cells classification. Health Inf Sci Syst 2024; 12:33. [PMID: 38685986 PMCID: PMC11056351 DOI: 10.1007/s13755-024-00291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
White blood cells (WBC) play an effective role in the body's defense against parasites, viruses, and bacteria in the human body. Also, WBCs are categorized based on their morphological structures into various subgroups. The number of these WBC types in the blood of non-diseased and diseased people is different. Thus, the study of WBC classification is quite significant for medical diagnosis. Due to the widespread use of deep learning in medical image analysis in recent years, it has also been used in WBC classification. Moreover, the ConvMixer and Swin transformer models, recently introduced, have garnered significant success by attaining efficient long contextual characteristics. Based on this, a new multipath hybrid network is proposed for WBC classification by using ConvMixer and Swin transformer. This proposed model is called Swin Transformer and ConvMixer based Multipath mixer (SC-MP-Mixer). In the SC-MP-Mixer model, firstly, features with strong spatial details are extracted with the ConvMixer. Then Swin transformer effectively handle these features with self-attention mechanism. In addition, the ConvMixer and Swin transformer blocks consist of a multipath structure to obtain better patch representations in the SC-MP-Mixer. To test the performance of the SC-MP-Mixer, experiments were performed on three WBC datasets with 4 (BCCD), 8 (PBC) and 5 (Raabin) classes. The experimental studies resulted in an accuracy of 99.65% for PBC, 98.68% for Raabin, and 95.66% for BCCD. When compared with the studies in the literature and the state-of-the-art models, it was seen that the SC-MP-Mixer had more effective classification results.
Collapse
Affiliation(s)
- Hüseyin Üzen
- Department of Computer Engineering, Faculty of Engineering and Architecture, Bingol University, Bingol, Turkey
| | - Hüseyin Fırat
- Department of Computer Engineering, Faculty of Engineering, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
4
|
Chen W, Dhawan M, Liu J, Ing D, Mehta K, Tran D, Lawrence D, Ganhewa M, Cirillo N. Mapping the Use of Artificial Intelligence-Based Image Analysis for Clinical Decision-Making in Dentistry: A Scoping Review. Clin Exp Dent Res 2024; 10:e70035. [PMID: 39600121 PMCID: PMC11599430 DOI: 10.1002/cre2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/19/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES Artificial intelligence (AI) is an emerging field in dentistry. AI is gradually being integrated into dentistry to improve clinical dental practice. The aims of this scoping review were to investigate the application of AI in image analysis for decision-making in clinical dentistry and identify trends and research gaps in the current literature. MATERIAL AND METHODS This review followed the guidelines provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR). An electronic literature search was performed through PubMed and Scopus. After removing duplicates, a preliminary screening based on titles and abstracts was performed. A full-text review and analysis were performed according to predefined inclusion criteria, and data were extracted from eligible articles. RESULTS Of the 1334 articles returned, 276 met the inclusion criteria (consisting of 601,122 images in total) and were included in the qualitative synthesis. Most of the included studies utilized convolutional neural networks (CNNs) on dental radiographs such as orthopantomograms (OPGs) and intraoral radiographs (bitewings and periapicals). AI was applied across all fields of dentistry - particularly oral medicine, oral surgery, and orthodontics - for direct clinical inference and segmentation. AI-based image analysis was use in several components of the clinical decision-making process, including diagnosis, detection or classification, prediction, and management. CONCLUSIONS A variety of machine learning and deep learning techniques are being used for dental image analysis to assist clinicians in making accurate diagnoses and choosing appropriate interventions in a timely manner.
Collapse
Affiliation(s)
- Wei Chen
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Monisha Dhawan
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Jonathan Liu
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Damie Ing
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Kruti Mehta
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Daniel Tran
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | | | - Max Ganhewa
- CoTreatAI, CoTreat Pty Ltd.MelbourneVictoriaAustralia
| | - Nicola Cirillo
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
- CoTreatAI, CoTreat Pty Ltd.MelbourneVictoriaAustralia
| |
Collapse
|
5
|
Zanini LGK, Rubira-Bullen IRF, Nunes FDLDS. Enhancing dental caries classification in CBCT images by using image processing and self-supervised learning. Comput Biol Med 2024; 183:109221. [PMID: 39378579 DOI: 10.1016/j.compbiomed.2024.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Diagnosing dental caries poses a significant challenge in dentistry, necessitating precise and early detection for effective management. This study utilizes Self-Supervised Learning (SSL) tasks to improve the classification of dental caries in Cone Beam Computed Tomography (CBCT) images, employing the International Caries Detection and Assessment System (ICDAS). Faced with the challenge of scarce annotated medical images, our research employs SSL to utilize unlabeled data, thereby improving model performance. We have developed a pipeline incorporating unlabeled data extraction from CBCT exams and subsequent model training using SSL tasks. A distinctive aspect of our approach is the integration of image processing techniques with SSL tasks, along with exploring the necessity for unlabeled data. Our research aims to identify the most effective image processing techniques for data extraction, the most efficient deep learning architectures for caries classification, the impact of unlabeled dataset sizes on model performance, and the comparative effectiveness of different SSL approaches in this domain. Among the tested architectures, ResNet-18, combined with the SimCLR task, demonstrated an average F1-score macro of 88.42%, Precision macro of 90.44%, and Sensitivity macro of 86.67%, reaching a 5.5% increase in F1-score compared to models using only deep learning architecture. These results suggest that SSL can significantly enhance the accuracy and efficiency of caries classification in CBCT images.
Collapse
Affiliation(s)
- Luiz Guilherme Kasputis Zanini
- Polytechnic School University of São Paulo, Av. Prof. Luciano Gualberto, 158 - Butantã, São Paulo, 05089030, São Paulo, Brazil.
| | | | | |
Collapse
|
6
|
Alharbi SS, Alhasson HF. Exploring the Applications of Artificial Intelligence in Dental Image Detection: A Systematic Review. Diagnostics (Basel) 2024; 14:2442. [PMID: 39518408 PMCID: PMC11545562 DOI: 10.3390/diagnostics14212442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Dental care has been transformed by neural networks, introducing advanced methods for improving patient outcomes. By leveraging technological innovation, dental informatics aims to enhance treatment and diagnostic processes. Early diagnosis of dental problems is crucial, as it can substantially reduce dental disease incidence by ensuring timely and appropriate treatment. The use of artificial intelligence (AI) within dental informatics is a pivotal tool that has applications across all dental specialties. This systematic literature review aims to comprehensively summarize existing research on AI implementation in dentistry. It explores various techniques used for detecting oral features such as teeth, fillings, caries, prostheses, crowns, implants, and endodontic treatments. AI plays a vital role in the diagnosis of dental diseases by enabling precise and quick identification of issues that may be difficult to detect through traditional methods. Its ability to analyze large volumes of data enhances diagnostic accuracy and efficiency, leading to better patient outcomes. METHODS An extensive search was conducted across a number of databases, including Science Direct, PubMed (MEDLINE), arXiv.org, MDPI, Nature, Web of Science, Google Scholar, Scopus, and Wiley Online Library. RESULTS The studies included in this review employed a wide range of neural networks, showcasing their versatility in detecting the dental categories mentioned above. Additionally, the use of diverse datasets underscores the adaptability of these AI models to different clinical scenarios. This study highlights the compatibility, robustness, and heterogeneity among the reviewed studies. This indicates that AI technologies can be effectively integrated into current dental practices. The review also discusses potential challenges and future directions for AI in dentistry. It emphasizes the need for further research to optimize these technologies for broader clinical applications. CONCLUSIONS By providing a detailed overview of AI's role in dentistry, this review aims to inform practitioners and researchers about the current capabilities and future potential of AI-driven dental care, ultimately contributing to improved patient outcomes and more efficient dental practices.
Collapse
Affiliation(s)
- Shuaa S. Alharbi
- Department of Information Technology, College of Computer, Qassim University, Buraydah 52571, Saudi Arabia;
| | | |
Collapse
|
7
|
Abdelazim R, Fouad EM. Artificial intelligent-driven decision-making for automating root fracture detection in periapical radiographs. BDJ Open 2024; 10:76. [PMID: 39353905 PMCID: PMC11445432 DOI: 10.1038/s41405-024-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The detection and early diagnosis of root fractures can be challenging; this difficulty applies particularly to newly qualified dentists. Aside from clinical examination, diagnosis often requires radiographic assessment. Nonetheless, human fallibility can introduce errors due to a lack of experience. AIM The proposed system aimed to assist in detecting root fractures through the integration of artificial intelligence techniques into the diagnosis process as a step for automating dental diagnosis and decision-making processes. MATERIALS AND METHOD A total of 400 radiographic images of fractured and unfractured teeth were obtained for the present research. Data handling techniques were implemented to balance the distribution of the samples. The AI-based system used the voting technique for five different pretrained models namely, VGG16, VGG19, ResNet50. DenseNet121, and DenseNet169 to perform the analysis. The parameters used for the analysis of the models are loss and accuracy curves. RESULTS VGG16 exhibited notable success with low training and validation losses (0.09% and 0.18%, respectively), high specificity, sensitivity, and positive predictive value (PPV). VGG19 showed potential overfitting concerns, while ResNet50 displayed progress in minimizing loss but exhibited bias toward unfractured cases. DenseNet121 effectively addressed overfitting and noise issues, achieving balanced metrics and impressive PPVs for both fractured and unfractured cases (0.933 and 0.898 respectively). With increased depth, DenseNet169 demonstrated enhanced generalization capability. CONCLUSION The proposed AI- based system demonstrated high precision and sensitivity for detecting root fractures in endodontically treated teeth by utilizing the voting method.
Collapse
Affiliation(s)
- Riem Abdelazim
- Department of Information Systems, Faculty of Information Technology, Misr University for Science and Technology, Giza, Egypt
| | - Eman M Fouad
- Division of Endodontics, Faculty of Oral and Dental Surgery, Misr University for Science and Technology, Giza, Egypt.
| |
Collapse
|
8
|
Wang Y, Li G, Zhang X, Wang Y, Zhang Z, Li J, Ma J, Wang L. Optimal Training Positive Sample Size Determination for Deep Learning with a Validation on CBCT Image Caries Recognition. Diagnostics (Basel) 2024; 14:2080. [PMID: 39335759 PMCID: PMC11431354 DOI: 10.3390/diagnostics14182080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Objectives: During deep learning model training, it is essential to consider the balance among the effects of sample size, actual resources, and time constraints. Single-arm objective performance criteria (OPC) was proposed to determine the optimal positive sample size for training deep learning models in caries recognition. Methods: An expected sensitivity (PT) of 0.6 and a clinically acceptable sensitivity (P0) of 0.5 were applied to the single-arm OPC calculation formula, yielding an optimal training set comprising 263 carious teeth. U-Net, YOLOv5n, and CariesDetectNet were trained and validated using clinically self-collected cone-beam computed tomography (CBCT) images that included varying quantities of carious teeth. To assess performance, an additional dataset was utilized to evaluate the accuracy of caries detection by both the models and two dental radiologists. Results: When the number of carious teeth reached approximately 250, the models reached the optimal performance levels. U-Net demonstrated superior performance, achieving accuracy, sensitivity, specificity, F1-Score, and Dice similarity coefficients of 0.9929, 0.9307, 0.9989, 0.9590, and 0.9435, respectively. The three models exhibited greater accuracy in caries recognition compared to dental radiologists. Conclusions: This study demonstrated that the positive sample size of CBCT images containing caries was predictable and could be calculated using single-arm OPC.
Collapse
Affiliation(s)
- Yanlin Wang
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Device & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology, Beijing 100080, China; (Y.W.); (X.Z.)
| | - Gang Li
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Device & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology, Beijing 100080, China; (Y.W.); (X.Z.)
| | - Xinyue Zhang
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Device & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology, Beijing 100080, China; (Y.W.); (X.Z.)
| | - Yue Wang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China; (Y.W.); (Z.Z.); (J.L.)
| | - Zhenhao Zhang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China; (Y.W.); (Z.Z.); (J.L.)
| | - Jupeng Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China; (Y.W.); (Z.Z.); (J.L.)
| | - Junqi Ma
- YOFO Medical Technology Co., Ltd., Hefei 230093, China; (J.M.); (L.W.)
| | - Linghang Wang
- YOFO Medical Technology Co., Ltd., Hefei 230093, China; (J.M.); (L.W.)
| |
Collapse
|
9
|
Al-Khalifa KS, Ahmed WM, Azhari AA, Qaw M, Alsheikh R, Alqudaihi F, Alfaraj A. The Use of Artificial Intelligence in Caries Detection: A Review. Bioengineering (Basel) 2024; 11:936. [PMID: 39329679 PMCID: PMC11428802 DOI: 10.3390/bioengineering11090936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This review critically examines the current state of AI applications in caries detection, focusing on the performance and accuracy of various AI techniques. We evaluated 40 studies from the past 23 years, carefully selected for their relevance and quality. Our analysis highlights the potential of AI, especially convolutional neural networks (CNNs), to improve diagnostic accuracy and efficiency in detecting dental caries. The findings underscore the transformative potential of AI in clinical dental practice.
Collapse
Affiliation(s)
- Khalifa S. Al-Khalifa
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Walaa Magdy Ahmed
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.M.A.); (A.A.A.)
| | - Amr Ahmed Azhari
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.M.A.); (A.A.A.)
| | - Masoumah Qaw
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.Q.); (R.A.)
| | - Rasha Alsheikh
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.Q.); (R.A.)
| | - Fatema Alqudaihi
- Department of Restorative Dentistry, Khobar Dental Complex, Eastern Health Cluster, Dammam 32253, Saudi Arabia;
| | - Amal Alfaraj
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
10
|
Szabó V, Szabó BT, Orhan K, Veres DS, Manulis D, Ezhov M, Sanders A. Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs. J Dent 2024; 147:105105. [PMID: 38821394 DOI: 10.1016/j.jdent.2024.105105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
OBJECTIVES This study aimed to assess the reliability of AI-based system that assists the healthcare processes in the diagnosis of caries on intraoral radiographs. METHODS The proximal surfaces of the 323 selected teeth on the intraoral radiographs were evaluated by two independent observers using an AI-based (Diagnocat) system. The presence or absence of carious lesions was recorded during Phase 1. After 4 months, the AI-aided human observers evaluated the same radiographs (Phase 2), and the advanced convolutional neural network (CNN) reassessed the radiographic data (Phase 3). Subsequently, data reflecting human disagreements were excluded (Phase 4). For each phase, the Cohen and Fleiss kappa values, as well as the sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of Diagnocat, were calculated. RESULTS During the four phases, the range of Cohen kappa values between the human observers and Diagnocat were κ=0.66-1, κ=0.58-0.7, and κ=0.49-0.7. The Fleiss kappa values were κ=0.57-0.8. The sensitivity, specificity and diagnostic accuracy values ranged between 0.51-0.76, 0.88-0.97 and 0.76-0.86, respectively. CONCLUSIONS The Diagnocat CNN supports the evaluation of intraoral radiographs for caries diagnosis, as determined by consensus between human and AI system observers. CLINICAL SIGNIFICANCE Our study may aid in the understanding of deep learning-based systems developed for dental imaging modalities for dentists and contribute to expanding the body of results in the field of AI-supported dental radiology..
Collapse
Affiliation(s)
- Viktor Szabó
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Bence Tamás Szabó
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Budapest, Hungary.
| | - Kaan Orhan
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Budapest, Hungary; Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey; Medical Design Application, and Research Center (MEDITAM), Ankara University, Ankara, Turkey
| | - Dániel Sándor Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
11
|
Zanini LGK, Rubira-Bullen IRF, Nunes FDLDS. A Systematic Review on Caries Detection, Classification, and Segmentation from X-Ray Images: Methods, Datasets, Evaluation, and Open Opportunities. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1824-1845. [PMID: 38429559 PMCID: PMC11300762 DOI: 10.1007/s10278-024-01054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 03/03/2024]
Abstract
Dental caries occurs from the interaction between oral bacteria and sugars, generating acids that damage teeth over time. The importance of X-ray images for detecting oral problems is undeniable in dentistry. With technological advances, it is feasible to identify these lesions using techniques such as deep learning, machine learning, and image processing. Therefore, the survey and systematization of these methods are essential to determining the main computational approaches for identifying caries in X-ray images. In this systematic review, we investigated the primary computational methods used for classifying, detecting, and segmenting caries in X-ray images. Following the PRISMA methodology, we selected relevant studies and analyzed their methods, strengths, limitations, imaging modalities, evaluation metrics, datasets, and classification techniques. The review encompassed 42 studies retrieved from the Science Direct, IEEExplore, ACM Digital, and PubMed databases from the Computer Science and Health areas. The results indicate that 12% of the included articles utilized public datasets, with deep learning being the predominant approach, accounting for 69% of the studies. The majority of these studies (76%) focused on classifying dental caries, either in binary or multiclass classification. Panoramic imaging was the most commonly used radiographic modality, representing 29% of the cases studied. Overall, our systematic review provides a comprehensive overview of the computational methods employed in identifying caries in radiographic images and highlights trends, patterns, and challenges in this research field.
Collapse
Affiliation(s)
- Luiz Guilherme Kasputis Zanini
- Department of Computer Engineering and Digital Systems, University of São Paulo, Av. Prof. Luciano Gualberto 158, São Paulo, 05508-010, São Paulo, Brazil.
| | | | - Fátima de Lourdes Dos Santos Nunes
- Department of Computer Engineering and Digital Systems, University of São Paulo, Av. Prof. Luciano Gualberto 158, São Paulo, 05508-010, São Paulo, Brazil
- School of Arts, Sciences and Humanities, University of São Paulo, Rua Arlindo Béttio, 1000, São Paulo, 03828-000, São Paulo, Brazil
| |
Collapse
|
12
|
Negi S, Mathur A, Tripathy S, Mehta V, Snigdha NT, Adil AH, Karobari MI. Artificial Intelligence in Dental Caries Diagnosis and Detection: An Umbrella Review. Clin Exp Dent Res 2024; 10:e70004. [PMID: 39206581 PMCID: PMC11358700 DOI: 10.1002/cre2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/29/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND AIM Dental caries is largely preventable, yet an important global health issue. Numerous systematic reviews have summarized the efficacy of artificial intelligence (AI) models for the diagnosis and detection of dental caries. Therefore, this umbrella review aimed to synthesize the results of systematic reviews on the application and effectiveness of AI models in diagnosing and detecting dental caries. METHODS MEDLINE/PubMed, IEEE Explore, Embase, and Cochrane Database of Systematic Reviews were searched to retrieve studies. Two authors independently screened the articles based on eligibility criteria and then, appraised the included articles. The findings are summarized in tabulation form and discussed using the narrative method. RESULT A total of 1249 entries were identified out of which 7 were finally included. The most often employed AI algorithms were the multilayer perceptron, support vector machine (SVM), and neural networks. The algorithms were built to perform the segmentation, classification, caries detection, diagnosis, and caries prediction from several sources, including periapical radiographs, panoramic radiographs, smartphone images, bitewing radiographs, near-infrared light transillumination images, and so forth. Convoluted neural networks (CNN) demonstrated high sensitivity, specificity, and area under the curve in the caries detection, segmentation, and classification tests. Notably, AI in conjunction with periapical and panoramic radiography images yielded better accuracy in detecting and diagnosing dental caries. CONCLUSION AI models, especially convolutional neural network (CNN)-based models, have an enormous amount of potential for accurate, objective dental caries diagnosis and detection. However, ethical considerations and cautious adoption remain critical to its successful integration into routine practice.
Collapse
Affiliation(s)
- Sapna Negi
- Department of Dental Research Cell, Dr. D. Y. Patil Dental College and HospitalDr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Ankita Mathur
- Department of Dental Research Cell, Dr. D. Y. Patil Dental College and HospitalDr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Snehasish Tripathy
- Department of Dental Research Cell, Dr. D. Y. Patil Dental College and HospitalDr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Vini Mehta
- Department of Dental Research Cell, Dr. D. Y. Patil Dental College and HospitalDr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Niher Tabassum Snigdha
- Department of Dental Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Abdul Habeeb Adil
- Department of Dental Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Mohmed Isaqali Karobari
- Department of Dental Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
- Department of Restorative Dentistry & Endodontics, Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
| |
Collapse
|
13
|
Li W, Wang Y, Liu Y. DMAF-Net: deformable multi-scale adaptive fusion network for dental structure detection with panoramic radiographs. Dentomaxillofac Radiol 2024; 53:296-307. [PMID: 38518093 PMCID: PMC11211679 DOI: 10.1093/dmfr/twae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024] Open
Abstract
OBJECTIVES Panoramic radiography is one of the most commonly used diagnostic modalities in dentistry. Automatic recognition of panoramic radiography helps dentists in decision support. In order to improve the accuracy of the detection of dental structural problems in panoramic radiographs, we have improved the You Only Look Once (YOLO) network and verified the feasibility of this new method in aiding the detection of dental problems. METHODS We propose a Deformable Multi-scale Adaptive Fusion Net (DMAF-Net) to detect 5 types of dental situations (impacted teeth, missing teeth, implants, crown restorations, and root canal-treated teeth) in panoramic radiography by improving the YOLO network. In DMAF-Net, we propose different modules to enhance the feature extraction capability of the network as well as to acquire high-level features at different scales, while using adaptively spatial feature fusion to solve the problem of scale mismatches of different feature layers, which effectively improves the detection performance. In order to evaluate the detection performance of the models, we compare the experimental results of different models in the test set and select the optimal results of the models by calculating the average of different metrics in each category as the evaluation criteria. RESULTS About 1474 panoramic radiographs were divided into training, validation, and test sets in the ratio of 7:2:1. In the test set, the average precision and recall of DMAF-Net are 92.7% and 87.6%, respectively; the mean Average Precision (mAP0.5 and mAP[0.5:0.95]) are 91.8% and 63.7%, respectively. CONCLUSIONS The proposed DMAF-Net model improves existing deep learning models and achieves automatic detection of tooth structure problems in panoramic radiographs. This new method has great potential for new computer-aided diagnostic, teaching, and clinical applications in the future.
Collapse
Affiliation(s)
- Wei Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuanjun Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Liu
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
14
|
Mărginean AC, Mureşanu S, Hedeşiu M, Dioşan L. Teeth segmentation and carious lesions segmentation in panoramic X-ray images using CariSeg, a networks' ensemble. Heliyon 2024; 10:e30836. [PMID: 38803980 PMCID: PMC11128823 DOI: 10.1016/j.heliyon.2024.e30836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Background Dental cavities are common oral diseases that can lead to pain, discomfort, and eventually, tooth loss. Early detection and treatment of cavities can prevent these negative consequences. We propose CariSeg, an intelligent system composed of four neural networks that result in the detection of cavities in dental X-rays with 99.42% accuracy. Method The first model of CariSeg, trained using the U-Net architecture, segments the area of interest, the teeth, and crops the radiograph around it. The next component segments the carious lesions and it is an ensemble composed of three architectures: U-Net, Feature Pyramid Network, and DeeplabV3. For tooth identification two merged datasets were used: The Tufts Dental Database consisting of 1000 panoramic radiography images and another dataset of 116 anonymized panoramic X-rays, taken at Noor Medical Imaging Center, Qom. For carious lesion segmentation, a dataset consisting of 150 panoramic X-ray images was acquired from the Department of Oral and Maxillofacial Surgery and Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca. Results The experiments demonstrate that our approach results in 99.42% accuracy and a mean 68.2% Dice coefficient. Conclusions AI helps in detecting carious lesions by analyzing dental X-rays and identifying cavities that might be missed by human observers, leading to earlier detection and treatment of cavities and resulting in better oral health outcomes.
Collapse
Affiliation(s)
- Andra Carmen Mărginean
- Computer Science Department, Babes Bolyai University, Mihail Kogalniceanu 1, Cluj-Napoca, 400347, Cluj, Romania
| | - Sorana Mureşanu
- Department of Oral and Maxillofacial Surgery and Radiology, Iuliu Haţieganu University of Medicine and Pharmacy, Victor Babes, 8, Cluj-Napoca, 400012, Cluj, Romania
| | - Mihaela Hedeşiu
- Department of Oral and Maxillofacial Surgery and Radiology, Iuliu Haţieganu University of Medicine and Pharmacy, Victor Babes, 8, Cluj-Napoca, 400012, Cluj, Romania
| | - Laura Dioşan
- Computer Science Department, Babes Bolyai University, Mihail Kogalniceanu 1, Cluj-Napoca, 400347, Cluj, Romania
| |
Collapse
|
15
|
Esmaeilyfard R, Bonyadifard H, Paknahad M. Dental Caries Detection and Classification in CBCT Images Using Deep Learning. Int Dent J 2024; 74:328-334. [PMID: 37940474 PMCID: PMC10988262 DOI: 10.1016/j.identj.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the accuracy of deep learning algorithms to diagnose tooth caries and classify the extension and location of dental caries in cone beam computed tomography (CBCT) images. To the best of our knowledge, this is the first study to evaluate the application of deep learning for dental caries in CBCT images. METHODS The CBCT image dataset comprised 382 molar teeth with caries and 403 noncarious molar cases. The dataset was divided into a development set for training and validation and test set. Three images were obtained for each case, including axial, sagittal, and coronal. The test dataset was provided to a multiple-input convolutional neural network (CNN). The network made predictions regarding the presence or absence of dental decay and classified the lesions according to their depths and types for the provided samples. Accuracy, sensitivity, specificity, and F1 score values were measured for dental caries detection and classification. RESULTS The diagnostic accuracy, sensitivity, specificity, and F1 score for caries detection in carious molar teeth were 95.3%, 92.1%, 96.3%, and 93.2%, respectively, and for noncarious molar teeth were 94.8%, 94.3%, 95.8%, and 94.6%. The CNN network showed high sensitivity, specificity, and accuracy in classifying caries extensions and locations. CONCLUSIONS This research demonstrates that deep learning models can accurately identify dental caries and classify their depths and types with high accuracy, sensitivity, and specificity. The successful application of deep learning in this field will undoubtedly assist dental practitioners and patients in improving diagnostic and treatment planning in dentistry. CLINICAL SIGNIFICANCE This study showed that deep learning can accurately detect and classify dental caries. Deep learning can provide dental caries detection accurately. Considering the shortage of dentists in certain areas, using CNNs can lead to broader geographic coverage in detecting dental caries.
Collapse
Affiliation(s)
- Rasool Esmaeilyfard
- Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran
| | - Haniyeh Bonyadifard
- Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran
| | - Maryam Paknahad
- Oral, and Dental Disease Research Center, Oral and Maxillofacial Radiology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
van Nistelrooij N, Ghoul KE, Xi T, Saha A, Kempers S, Cenci M, Loomans B, Flügge T, van Ginneken B, Vinayahalingam S. Combining public datasets for automated tooth assessment in panoramic radiographs. BMC Oral Health 2024; 24:387. [PMID: 38532414 PMCID: PMC10964594 DOI: 10.1186/s12903-024-04129-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
OBJECTIVE Panoramic radiographs (PRs) provide a comprehensive view of the oral and maxillofacial region and are used routinely to assess dental and osseous pathologies. Artificial intelligence (AI) can be used to improve the diagnostic accuracy of PRs compared to bitewings and periapical radiographs. This study aimed to evaluate the advantages and challenges of using publicly available datasets in dental AI research, focusing on solving the novel task of predicting tooth segmentations, FDI numbers, and tooth diagnoses, simultaneously. MATERIALS AND METHODS Datasets from the OdontoAI platform (tooth instance segmentations) and the DENTEX challenge (tooth bounding boxes with associated diagnoses) were combined to develop a two-stage AI model. The first stage implemented tooth instance segmentation with FDI numbering and extracted regions of interest around each tooth segmentation, whereafter the second stage implemented multi-label classification to detect dental caries, impacted teeth, and periapical lesions in PRs. The performance of the automated tooth segmentation algorithm was evaluated using a free-response receiver-operating-characteristics (FROC) curve and mean average precision (mAP) metrics. The diagnostic accuracy of detection and classification of dental pathology was evaluated with ROC curves and F1 and AUC metrics. RESULTS The two-stage AI model achieved high accuracy in tooth segmentations with a FROC score of 0.988 and a mAP of 0.848. High accuracy was also achieved in the diagnostic classification of impacted teeth (F1 = 0.901, AUC = 0.996), whereas moderate accuracy was achieved in the diagnostic classification of deep caries (F1 = 0.683, AUC = 0.960), early caries (F1 = 0.662, AUC = 0.881), and periapical lesions (F1 = 0.603, AUC = 0.974). The model's performance correlated positively with the quality of annotations in the used public datasets. Selected samples from the DENTEX dataset revealed cases of missing (false-negative) and incorrect (false-positive) diagnoses, which negatively influenced the performance of the AI model. CONCLUSIONS The use and pooling of public datasets in dental AI research can significantly accelerate the development of new AI models and enable fast exploration of novel tasks. However, standardized quality assurance is essential before using the datasets to ensure reliable outcomes and limit potential biases.
Collapse
Affiliation(s)
- Niels van Nistelrooij
- Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Postal Number 590, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Khalid El Ghoul
- Department of Oral and Maxillofacial Surgery, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, The Netherlands
| | - Tong Xi
- Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, The Netherlands
| | - Anindo Saha
- Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, The Netherlands
| | - Steven Kempers
- Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Postal Number 590, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Max Cenci
- Department of Dentistry, Radboud University Medical Center, Ph. Van Leydenlaan 25, Nijmegen, 6525 EX, The Netherlands
| | - Bas Loomans
- Department of Dentistry, Radboud University Medical Center, Ph. Van Leydenlaan 25, Nijmegen, 6525 EX, The Netherlands
| | - Tabea Flügge
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
- Einstein Center for Digital Future, Wilhelmstraße 67, Berlin, Germany.
| | - Bram van Ginneken
- Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, The Netherlands
| | - Shankeeth Vinayahalingam
- Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Postal Number 590, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
17
|
Hamdan M, Badr Z, Bjork J, Saxe R, Malensek F, Miller C, Shah R, Han S, Mohammad-Rahimi H. Detection of dental restorations using no-code artificial intelligence. J Dent 2023; 139:104768. [PMID: 39492546 DOI: 10.1016/j.jdent.2023.104768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES The purpose of this study was to utilize a no-code computer vision platform to develop, train, and evaluate a model specifically designed for segmenting dental restorations on panoramic radiographs. METHODS One hundred anonymized panoramic radiographs were selected for this study. Accurate labeling of dental restorations was performed by calibrated dental faculty and students, with subsequent final review by an oral radiologist. The radiographs were automatically split within the platform into training (70%), development (20%), and testing (10%) subgroups. The model was trained for 40 epochs using a medium model size. Data augmentation techniques available within the platform, namely horizontal and vertical flip, were utilized on the training set to improve the model's predictions. Post-training, the model was tested for independent predictions. The model's diagnostic validity was assessed through the calculation of sensitivity, specificity, accuracy, precision, F1-score by pixel and by tooth, and by ROC-AUC. RESULTS A total of 1,108 restorations were labeled on 960 teeth. At a confidence threshold of 0.95, the model achieved 86.64% sensitivity, 99.78% specificity, 99.63% accuracy, 82.4% precision and an F1-score of 0.844 by pixel. The model achieved 98.34% sensitivity, 98.13% specificity, 98.21% accuracy, 98.85% precision and an F1-score of 0.98 by tooth. ROC curve showed high performance with an AUC of 0.978. CONCLUSIONS The no-code computer vision platform used in this study accurately detected dental restorations on panoramic radiographs. However, further research and validation are required to evaluate the performance of no-code platforms on larger and more diverse datasets, as well as for other detection and segmentation tasks. CLINICAL SIGNIFICANCE The advent of no-code computer vision holds significant promise in dentistry and dental research by eliminating the requirement for coding skills, democratizing access to artificial intelligence tools, and potentially revolutionizing dental diagnostics.
Collapse
Affiliation(s)
- Manal Hamdan
- Department of General Dental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| | - Zaid Badr
- Technological Innovation Center, Department of General Dental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Jennifer Bjork
- Department of General Dental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Reagan Saxe
- Department of General Dental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | | | - Caroline Miller
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Rakhi Shah
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Shengtong Han
- Deans Office, Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Hossein Mohammad-Rahimi
- Division of Artificial Intelligence Imaging Research, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Sivari E, Senirkentli GB, Bostanci E, Guzel MS, Acici K, Asuroglu T. Deep Learning in Diagnosis of Dental Anomalies and Diseases: A Systematic Review. Diagnostics (Basel) 2023; 13:2512. [PMID: 37568875 PMCID: PMC10416832 DOI: 10.3390/diagnostics13152512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Deep learning and diagnostic applications in oral and dental health have received significant attention recently. In this review, studies applying deep learning to diagnose anomalies and diseases in dental image material were systematically compiled, and their datasets, methodologies, test processes, explainable artificial intelligence methods, and findings were analyzed. Tests and results in studies involving human-artificial intelligence comparisons are discussed in detail to draw attention to the clinical importance of deep learning. In addition, the review critically evaluates the literature to guide and further develop future studies in this field. An extensive literature search was conducted for the 2019-May 2023 range using the Medline (PubMed) and Google Scholar databases to identify eligible articles, and 101 studies were shortlisted, including applications for diagnosing dental anomalies (n = 22) and diseases (n = 79) using deep learning for classification, object detection, and segmentation tasks. According to the results, the most commonly used task type was classification (n = 51), the most commonly used dental image material was panoramic radiographs (n = 55), and the most frequently used performance metric was sensitivity/recall/true positive rate (n = 87) and accuracy (n = 69). Dataset sizes ranged from 60 to 12,179 images. Although deep learning algorithms are used as individual or at least individualized architectures, standardized architectures such as pre-trained CNNs, Faster R-CNN, YOLO, and U-Net have been used in most studies. Few studies have used the explainable AI method (n = 22) and applied tests comparing human and artificial intelligence (n = 21). Deep learning is promising for better diagnosis and treatment planning in dentistry based on the high-performance results reported by the studies. For all that, their safety should be demonstrated using a more reproducible and comparable methodology, including tests with information about their clinical applicability, by defining a standard set of tests and performance metrics.
Collapse
Affiliation(s)
- Esra Sivari
- Department of Computer Engineering, Cankiri Karatekin University, Cankiri 18100, Turkey
| | | | - Erkan Bostanci
- Department of Computer Engineering, Ankara University, Ankara 06830, Turkey
| | | | - Koray Acici
- Department of Artificial Intelligence and Data Engineering, Ankara University, Ankara 06830, Turkey
| | - Tunc Asuroglu
- Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| |
Collapse
|