1
|
Seyhan AA. Circulating Liquid Biopsy Biomarkers in Glioblastoma: Advances and Challenges. Int J Mol Sci 2024; 25:7974. [PMID: 39063215 PMCID: PMC11277426 DOI: 10.3390/ijms25147974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
3
|
Tretyakova MS, Menyailo ME, Schegoleva AA, Bokova UA, Larionova IV, Denisov EV. Technologies for Viable Circulating Tumor Cell Isolation. Int J Mol Sci 2022; 23:ijms232415979. [PMID: 36555625 PMCID: PMC9788311 DOI: 10.3390/ijms232415979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The spread of tumor cells throughout the body by traveling through the bloodstream is a critical step in metastasis, which continues to be the main cause of cancer-related death. The detection and analysis of circulating tumor cells (CTCs) is important for understanding the biology of metastasis and the development of antimetastatic therapy. However, the isolation of CTCs is challenging due to their high heterogeneity and low representation in the bloodstream. Different isolation methods have been suggested, but most of them lead to CTC damage. However, viable CTCs are an effective source for developing preclinical models to perform drug screening and model the metastatic cascade. In this review, we summarize the available literature on methods for isolating viable CTCs based on different properties of cells. Particular attention is paid to the importance of in vitro and in vivo models obtained from CTCs. Finally, we emphasize the current limitations in CTC isolation and suggest potential solutions to overcome them.
Collapse
Affiliation(s)
- Maria S. Tretyakova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Maxim E. Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anastasia A. Schegoleva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ustinia A. Bokova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Irina V. Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Evgeny V. Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Correspondence: ; Tel./Fax: +7-3822-282676 (ext. 3375)
| |
Collapse
|
4
|
Stamatakis K, Torres-Gérica P, Jiménez-Segovia A, Ramos-Muñoz E, Crespo-Toro L, Fuentes P, Toribio ML, Callejas-Hernández F, Carrato A, García Bermejo ML, Fresno M. Cyclooxygenase 2 Effector Genes as Potential Inflammation-Related Biomarkers for Colorectal Cancer Circulating Tumor Cells Detection by Liquid Biopsy. Front Pharmacol 2022; 12:806395. [PMID: 35153760 PMCID: PMC8831911 DOI: 10.3389/fphar.2021.806395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Cyclooxygenase 2 (COX2) has been implicated in cancer development and metastasis. We have identified several COX2-regulated inflammation-related genes in human colorectal cancer cells and shown that some of them play important roles in tumor progression. In this work, we have studied the COX2-regulated genes in the mouse colorectal cancer cell line CT26, to find that many are also regulated by COX2 over-expression. On the other hand, we generated a CT26 cell line expressing Gfp and Luciferase, to study tumor growth and metastasis in immunocompetent Balb/c mice. We then collected solid tissue, and blood samples, from healthy and tumor-bearing mice. Using the Parsortix® cell separation system and taking advantage of the fact that the tumor cells expressed Gfp, we were able to identify circulating tumor cells (CTCs) in some of the mice. We compared the mRNA expression levels of Ptgs2 and effector genes in the samples obtained from tumor-bearing or healthy mice, namely, tumor or healthy colon, Ficoll purified buffy coat, and Parsortix-isolated cells to find different patterns between healthy, tumor-bearing mice with or without CTCs. Although for genes like Il15 we did not observe any difference between healthy and tumor-bearing mice in Ficoll or Parsortix samples; others, such as Egr1, Zc3h12a, Klf4, or Nfat5, allowed distinguishing for cancer or CTC presence. Gene expression analysis in Ficoll or Parsortix processed samples, after liquid biopsy, may offer valuable diagnostic and prognostic information and thus should be further studied.
Collapse
Affiliation(s)
- Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- *Correspondence: Konstantinos Stamatakis, ; Manuel Fresno,
| | - Patricia Torres-Gérica
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alba Jiménez-Segovia
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Patricia Fuentes
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
| | - María L. Toribio
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
| | - Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alfredo Carrato
- Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, UAM/CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- *Correspondence: Konstantinos Stamatakis, ; Manuel Fresno,
| |
Collapse
|
5
|
Holcakova J, Bartosik M, Anton M, Minar L, Hausnerova J, Bednarikova M, Weinberger V, Hrstka R. New Trends in the Detection of Gynecological Precancerous Lesions and Early-Stage Cancers. Cancers (Basel) 2021; 13:6339. [PMID: 34944963 PMCID: PMC8699592 DOI: 10.3390/cancers13246339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
The prevention and early diagnostics of precancerous stages are key aspects of contemporary oncology. In cervical cancer, well-organized screening and vaccination programs, especially in developed countries, are responsible for the dramatic decline of invasive cancer incidence and mortality. Cytological screening has a long and successful history, and the ongoing implementation of HPV triage with increased sensitivity can further decrease mortality. On the other hand, endometrial and ovarian cancers are characterized by a poor accessibility to specimen collection, which represents a major complication for early diagnostics. Therefore, despite relatively promising data from evaluating the combined effects of genetic variants, population screening does not exist, and the implementation of new biomarkers is, thus, necessary. The introduction of various circulating biomarkers is of potential interest due to the considerable heterogeneity of cancer, as highlighted in this review, which focuses exclusively on the most common tumors of the genital tract, namely, cervical, endometrial, and ovarian cancers. However, it is clearly shown that these malignancies represent different entities that evolve in different ways, and it is therefore necessary to use different methods for their diagnosis and treatment.
Collapse
Affiliation(s)
- Jitka Holcakova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (J.H.); (M.B.)
| | - Martin Bartosik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (J.H.); (M.B.)
| | - Milan Anton
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital, 625 00 Brno, Czech Republic; (M.A.); (L.M.)
| | - Lubos Minar
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital, 625 00 Brno, Czech Republic; (M.A.); (L.M.)
| | - Jitka Hausnerova
- Department of Pathology, Masaryk University and University Hospital, 625 00 Brno, Czech Republic;
| | - Marketa Bednarikova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital, 625 00 Brno, Czech Republic;
| | - Vit Weinberger
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital, 625 00 Brno, Czech Republic; (M.A.); (L.M.)
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (J.H.); (M.B.)
| |
Collapse
|
6
|
Kryvoshlyk I. CIRCULATING TUMOR CELLS: WHERE WE LEFT OFF? BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer metastasis and recurrence are the leading causes of cancer-related death. Tumor cells which leave the primary or secondary tumors and shed into the bloodstream are called circulating tumor cells (CTC). These cells are the key drivers of cancer dissemination to surrounding tissues and to distant organs. The use of CTC in clinical practice necessitates the deep insight into their biology, as well as into their role in cancer evasion of immune surveillance, tumor resistance to chemo- radio- and immunotherapies and metastatic dormancy. Aim. The purpose of the work was to review the current knowledge on the CTC biology, as well as the prospects for their use for the diagnosis and targeted treatment of metastatic disease. Methods. The work proposed the integrative literature review using MEDLINE, Biological Abstracts and EMBASE databases. Results. This review summarizes and discusses historical milestones and current data concerning СTС biology, the main stages of their life cycle, their role in metastatic cascade, clinical prospects for their use as markers for the diagnosis and prognostication of the disease course, as well as targets for cancer treatment. Conclusions. Significant progress in the area of CTC biology and their use in cancer theranostics convincingly proved the attractiveness of these cells as targets for cancer prognosis and therapy. The effective use of liquid biopsy with quantitative and phenotypic characteristics of CTCs is impeded by the imperfection of the methodology for taking biological material and by the lack of reliable markers for assessing the metastatic potential of CTCs of various origins. The variety of mechanisms of tumor cells migration and invasion requires the development of complex therapeutic approaches for anti-metastatic therapy targeting CTCs. Efforts to address these key issues could help developing new and effective cancer treatment strategies.
Collapse
|
7
|
Priyadarshani J, Roy T, Das S, Chakraborty S. Frugal Approach toward Developing a Biomimetic, Microfluidic Network-on-a-Chip for In Vitro Analysis of Microvascular Physiology. ACS Biomater Sci Eng 2021; 7:1263-1277. [PMID: 33555875 DOI: 10.1021/acsbiomaterials.1c00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several disease conditions, such as cancer metastasis and atherosclerosis, are deeply connected with the complex biophysical phenomena taking place in the complicated architecture of the tiny blood vessels in human circulatory systems. Traditionally, these diseases have been probed by devising various animal models, which are otherwise constrained by ethical considerations as well as limited predictive capabilities. Development of an engineered network-on-a-chip, which replicates not only the functional aspects of the blood-carrying microvessels of human bodies, but also its geometrical complexity and hierarchical microstructure, is therefore central to the evaluation of organ-assist devices and disease models for therapeutic assessment. Overcoming the constraints of reported resource-intensive fabrication techniques, here, we report a facile, simple yet niche combination of surface engineering and microfabrication strategy to devise a highly ordered hierarchical microtubular network embedded within a polydimethylsiloxane (PDMS) slab for dynamic cell culture on a chip, with a vision of addressing the exclusive aspects of the vascular transport processes under medically relevant paradigms. The design consists of hierarchical complexity ranging from capillaries (∼80 μm) to large arteries (∼390 μm) and a simultaneous tuning of the interfacial material chemistry. The fluid flow behavior is characterized numerically within the hierarchical network, and a confluent endothelial layer is realized on the inner wall of microfluidic device. We further explore the efficacy of the device as a vascular deposition assay of circulatory tumor cells (MG-63 osteosarcoma cells) present in whole blood. The proposed paradigm of mimicking an in vitro vascular network in a low-cost paradigm holds further potential for probing cellular dynamics as well as offering critical insights into various vascular transport processes.
Collapse
Affiliation(s)
- Jyotsana Priyadarshani
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Trina Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
8
|
Kitz J, Goodale D, Postenka C, Lowes LE, Allan AL. EMT-independent detection of circulating tumor cells in human blood samples and pre-clinical mouse models of metastasis. Clin Exp Metastasis 2021; 38:97-108. [PMID: 33415568 PMCID: PMC7882592 DOI: 10.1007/s10585-020-10070-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/25/2020] [Indexed: 01/31/2023]
Abstract
Circulating tumor cells (CTCs) present an opportunity to detect/monitor metastasis throughout disease progression. The CellSearch® is currently the only FDA-approved technology for CTC detection in patients. The main limitation of this system is its reliance on epithelial markers for CTC isolation/enumeration, which reduces its ability to detect more aggressive mesenchymal CTCs that are generated during metastasis via epithelial-to-mesenchymal transition (EMT). This Technical Note describes and validates two EMT-independent CTC analysis protocols; one for human samples using Parsortix® and one for mouse samples using VyCap. Parsortix® identifies significantly more mesenchymal human CTCs compared to the clinical CellSearch® test, and VyCap identifies significantly more CTCs compared to our mouse CellSearch® protocol regardless of EMT status. Recovery and downstream molecular characterization of CTCs is highly feasible using both Parsortix® and VyCap. The described CTC protocols can be used by investigators to study CTC generation, EMT and metastasis in both pre-clinical models and clinical samples.
Collapse
Affiliation(s)
- Jenna Kitz
- London Regional Cancer Program, London Health Sciences Centre, London, Canada
- Department of Anatomy & Cell Biology, Western University, London, Canada
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London, Canada
| | - Carl Postenka
- London Regional Cancer Program, London Health Sciences Centre, London, Canada
| | - Lori E Lowes
- Flow Cytometry, London Health Sciences Centre, London, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, Canada.
- Department of Anatomy & Cell Biology, Western University, London, Canada.
- Department of Oncology, Western University, London, Canada.
- Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
9
|
Valiente M, Van Swearingen AED, Anders CK, Bairoch A, Boire A, Bos PD, Cittelly DM, Erez N, Ferraro GB, Fukumura D, Gril B, Herlyn M, Holmen SL, Jain RK, Joyce JA, Lorger M, Massague J, Neman J, Sibson NR, Steeg PS, Thorsen F, Young LS, Varešlija D, Vultur A, Weis-Garcia F, Winkler F. Brain Metastasis Cell Lines Panel: A Public Resource of Organotropic Cell Lines. Cancer Res 2020; 80:4314-4323. [PMID: 32641416 PMCID: PMC7572582 DOI: 10.1158/0008-5472.can-20-0291] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/27/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Spread of cancer to the brain remains an unmet clinical need in spite of the increasing number of cases among patients with lung, breast cancer, and melanoma most notably. Although research on brain metastasis was considered a minor aspect in the past due to its untreatable nature and invariable lethality, nowadays, limited but encouraging examples have questioned this statement, making it more attractive for basic and clinical researchers. Evidences of its own biological identity (i.e., specific microenvironment) and particular therapeutic requirements (i.e., presence of blood-brain barrier, blood-tumor barrier, molecular differences with the primary tumor) are thought to be critical aspects that must be functionally exploited using preclinical models. We present the coordinated effort of 19 laboratories to compile comprehensive information related to brain metastasis experimental models. Each laboratory has provided details on the cancer cell lines they have generated or characterized as being capable of forming metastatic colonies in the brain, as well as principle methodologies of brain metastasis research. The Brain Metastasis Cell Lines Panel (BrMPanel) represents the first of its class and includes information about the cell line, how tropism to the brain was established, and the behavior of each model in vivo. These and other aspects described are intended to assist investigators in choosing the most suitable cell line for research on brain metastasis. The main goal of this effort is to facilitate research on this unmet clinical need, to improve models through a collaborative environment, and to promote the exchange of information on these valuable resources.
Collapse
Affiliation(s)
- Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | | | - Carey K Anders
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Durham, North Carolina
| | - Amos Bairoch
- CALIPHO group, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paula D Bos
- Department of Pathology, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Diana M Cittelly
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gino B Ferraro
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Dai Fukumura
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | | | - Meenhard Herlyn
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sheri L Holmen
- Huntsman Cancer Institute and Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Rakesh K Jain
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Johanna A Joyce
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Mihaela Lorger
- Brain Metastasis Research Group, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Joan Massague
- Cancer Cell Biology Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Josh Neman
- Departments of Neurological Surgery, Physiology & Neuroscience, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Frits Thorsen
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, P.R. China
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Adina Vultur
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Frances Weis-Garcia
- Antibody & Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Hsieh JCH, Wang HM, Wu MH, Chang KP, Chang PH, Liao CT, Liau CT. Review of emerging biomarkers in head and neck squamous cell carcinoma in the era of immunotherapy and targeted therapy. Head Neck 2020; 41 Suppl 1:19-45. [PMID: 31573749 DOI: 10.1002/hed.25932] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Biomarkers in head and neck squamous cell carcinoma (HNSCC) emerge rapidly in recent years, especially for new targeted therapies and immunotherapies. METHODS Recent, relevant peer-reviewed evidence were critically reviewed and summarized. RESULTS This review article briefly introduces essential biomarker concepts, including purposes and classifications (predictive, prognostic, and diagnostic markers), and the phases of biomarker development. We summarize current biomarkers in order of clinical utility; p16 and human papillomavirus status remain the most important and validated biomarkers in HNSCC. The rationale for biomarker study design continues to evolve with technological advances, especially whole-exome or whole-genomic sequencing. Noninvasive body fluid and liquid biopsy biomarkers appear to hold strong potential for development as tools for early cancer detection, cancer diagnosis, monitoring of disease recurrence, and outcome prediction. In light of discrepancies among different technologies, standardized approaches are needed. CONCLUSION Biomarkers from cancer tissue or blood in HNSCC could direct new anticancer therapies.
Collapse
Affiliation(s)
- Jason Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Hung-Ming Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Min-Hsien Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Kai-Ping Chang
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Pei-Hung Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan and Chang Gung University, Taoyuan, Taiwan.,Cancer Center, Chang Gung Memorial Hospital, Keelung, and Chang Gung University, Taoyuan, Taiwan
| | - Chun-Ta Liao
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chi-Ting Liau
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
11
|
Akpe V, Kim TH, Brown CL, Cock IE. Circulating tumour cells: a broad perspective. J R Soc Interface 2020; 17:20200065. [PMCID: PMC7423436 DOI: 10.1098/rsif.2020.0065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/09/2020] [Indexed: 08/13/2023] Open
Abstract
Circulating tumour cells (CTCs) have recently been identified as valuable biomarkers for diagnostic and prognostic evaluations, as well for monitoring therapeutic responses to treatments. CTCs are rare cells which may be present as one CTC surrounded by approximately 1 million white blood cells and 1 billion red blood cells per millilitre of peripheral blood. Despite the various challenges in CTC detection, considerable progress in detection methods have been documented in recent times, particularly for methodologies incorporating nanomaterial-based platforms and/or integrated microfluidics. Herein, we summarize the importance of CTCs as biological markers for tumour detection, highlight their mechanism of cellular invasion and discuss the various challenges associated with CTC research, including vulnerability, heterogeneity, phenotypicity and size differences. In addition, we describe nanomaterial agents used for electrochemistry and surface plasmon resonance applications, which have recently been used to selectively capture cancer cells and amplify signals for CTC detection. The intrinsic properties of nanomaterials have also recently been exploited to achieve photothermal destruction of cancer cells. This review describes recent advancements and future perspectives in the CTC field.
Collapse
Affiliation(s)
- Victor Akpe
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Tak H. Kim
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Christopher L. Brown
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Ian E. Cock
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| |
Collapse
|
12
|
Detection of MET Alterations Using Cell Free DNA and Circulating Tumor Cells from Cancer Patients. Cells 2020; 9:cells9020522. [PMID: 32102486 PMCID: PMC7072825 DOI: 10.3390/cells9020522] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/05/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
MET alterations may provide a potential biomarker to evaluate patients who will benefit from treatment with MET inhibitors. Therefore, the purpose of the present study is to investigate the utility of a liquid biopsy-based strategy to assess MET alterations in cancer patients. We analyzed MET amplification in circulating free DNA (cfDNA) from 174 patients with cancer and 49 healthy controls and demonstrated the accuracy of the analysis to detect its alteration in patients. Importantly, a significant correlation between cfDNA concentration and MET copy number (CN) in cancer patients (r = 0.57, p <10−10) was determined. Furthermore, we evaluated two approaches to detect the presence of MET on circulating tumor cells (CTCs), using the CellSearch® and Parsortix systems and monitored patients under anti-EGFR treatment (n = 30) combining both cfDNA and CTCs analyses. This follow-up provides evidence for the potential of MET CN assessment when patients develop resistance to anti-EGFR therapy and a significant association between the presence of CTCs MET+ and the Overall Survival (OS) in head and neck cancer patients (P = 0.05; HR = 6.66). In conclusion, we develop specific and noninvasive assays to monitor MET status in cfDNA/CTCs and demonstrate the utility of plasma MET CN determination as a biomarker for monitoring the appearance of resistance to anti-EGFR therapy.
Collapse
|
13
|
Klotz R, Yu M. Insights into brain metastasis: Recent advances in circulating tumor cell research. Cancer Rep (Hoboken) 2020; 5:e1239. [PMID: 33372393 PMCID: PMC9124503 DOI: 10.1002/cnr2.1239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background How tumor cells disseminate to brain and establish brain metastasis remains partly an unsolved problem. This devastating complication of many cancers is initiated by a rare subset of the circulating tumor cells (CTCs) shed into the blood stream. Thus, the profiling of the molecular properties in these brain metastasis‐initiating CTCs is essential to uncover the mechanisms underlying brain metastasis. Recent Findings Important efforts to improve the enrichment and detection of CTCs enabled the detailed molecular and functional analysis of CTCs that drive brain metastasis. In this review, we highlight key findings on existing preclinical studies that provide insights toward a comprehensive picture of brain metastasis‐precursors in CTCs and the potential clinical implications. Conclusion A deeper understanding of the brain metastasis precursors should help to stratify high‐risk patients and improve preventive therapeutic strategies. Although all these preclinical evidences have yet to be translated into patients, they provide considerable hope to benefit patients with brain metastases in the future.
Collapse
Affiliation(s)
- Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
14
|
Chopra V, Sangarappillai RM, Romero‐Canelón I, Jones AM. Lysyl Oxidase Like‐2 (LOXL2): An Emerging Oncology Target. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vriddhi Chopra
- School of PharmacyUniversity of Birmingham Birmingham B15 2TT UK
| | | | | | - Alan M. Jones
- School of PharmacyUniversity of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
15
|
Agrawal S, Woźniak M, Łuc M, Makuch S, Pielka E, Agrawal AK, Wietrzyk J, Banach J, Gamian A, Pizon M, Ziółkowski P. Insulin enhancement of the antitumor activity of chemotherapeutic agents in colorectal cancer is linked with downregulating PIK3CA and GRB2. Sci Rep 2019; 9:16647. [PMID: 31719636 PMCID: PMC6851401 DOI: 10.1038/s41598-019-53145-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/21/2019] [Indexed: 12/22/2022] Open
Abstract
The present state of cancer chemotherapy is unsatisfactory. New anticancer drugs that marginally improve the survival of patients continue to be developed at an unsustainably high cost. The study aimed to elucidate the effects of insulin (INS), an inexpensive drug with a convincing safety profile, on the susceptibility of colon cancer to chemotherapeutic agents: 5-fluorouracil (FU), oxaliplatin (OXA), irinotecan (IRI), cyclophosphamide (CPA) and docetaxel (DOC). To examine the effects of insulin on cell viability and apoptosis, we performed an in vitro analysis on colon cancer cell lines Caco-2 and SW480. To verify the results, we performed in vivo analysis on mice bearing MC38 colon tumors. To assess the underlying mechanism of the therapy, we examined the mRNA expression of pathways related to the signaling downstream of insulin receptors (INSR). Moreover, we performed Western blotting to confirm expression patterns derived from the genetic analysis. For the quantification of circulating tumor cells in the peripheral blood, we used the maintrac method. The results of our study show that insulin-pretreated colon cancer cells are significantly more susceptible to commonly used chemotherapeutics. The apoptosis ratio was also enhanced when INS was administered complementary to the examined drugs. The in vivo study showed that the combination of INS and FU resulted in significant inhibition of tumor growth and reduction of the number of circulating tumor cells. This combination caused a significant downregulation of the key signaling substrates downstream of INSR. The results indicate that the downregulation of PIK3CA (phosphatidylinositol 3-kinase catalytic subunit alpha), which plays a critical role in cell signaling and GRB2 (growth factor receptor-bound protein 2), a regulator of cell proliferation and differentiation may be responsible for the sensitizing effect of INS. These findings were confirmed at protein levels by Western blotting. In conclusion, these results suggest that INS might be potentially applied to clinical use to enhance the therapeutic effectiveness of chemotherapeutic drugs. The findings may become a platform for the future development of new and inexpensive strategies for the clinical chemotherapy of tumors.
Collapse
Affiliation(s)
- Siddarth Agrawal
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland.
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland
| | - Mateusz Łuc
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Pielka
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland
| | - Anil Kumar Agrawal
- 2nd Department and Clinic of General and Oncological Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Banach
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Andrzej Gamian
- Department of Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Monika Pizon
- Transfusion Center Bayreuth, Kurpromenade 2, 95448, Bayreuth, Germany
| | - Piotr Ziółkowski
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
16
|
Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res 2019; 21:98. [PMID: 31462307 PMCID: PMC6714238 DOI: 10.1186/s13058-019-1182-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) represent a temporal "snapshot" of a patient's cancer and changes that occur during disease evolution. There is an extensive literature studying CTCs in breast cancer patients, and particularly in those with metastatic disease. In parallel, there is an increasing use of patient-derived models in preclinical investigations of human cancers. Yet studies are still limited demonstrating CTC shedding and metastasis formation in patient-derived models of breast cancer. METHODS We used seven patient-derived orthotopic xenograft (PDOX) models generated from triple-negative breast cancer (TNBC) patients to study CTCs and distant metastases. Tumor fragments from PDOX tissue from each of the seven models were implanted into 57 NOD scid gamma (NSG) mice, and tumor growth and volume were monitored. Human CTC capture from mouse blood was first optimized on the marker-agnostic Vortex CTC isolation platform, and whole blood was processed from 37 PDOX tumor-bearing mice. RESULTS Staining and imaging revealed the presence of CTCs in 32/37 (86%). The total number of CTCs varied between different PDOX tumor models and between individual mice bearing the same PDOX tumors. CTCs were heterogeneous and showed cytokeratin (CK) positive, vimentin (VIM) positive, and mixed CK/VIM phenotypes. Metastases were detected in the lung (20/57, 35%), liver (7/57, 12%), and brain (1/57, less than 2%). The seven different PDOX tumor models displayed varying degrees of metastatic potential, including one TNBC PDOX tumor model that failed to generate any detectable metastases (0/8 mice) despite having CTCs present in the blood of 5/5 tested, suggesting that CTCs from this particular PDOX tumor model may typify metastatic inefficiency. CONCLUSION PDOX tumor models that shed CTCs and develop distant metastases represent an important tool for investigating TNBC.
Collapse
|
17
|
Ireson CR, Alavijeh MS, Palmer AM, Fowler ER, Jones HJ. The role of mouse tumour models in the discovery and development of anticancer drugs. Br J Cancer 2019; 121:101-108. [PMID: 31231121 PMCID: PMC6738037 DOI: 10.1038/s41416-019-0495-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Our understanding of cancer biology has increased substantially over the past 30 years. Despite this, and an increasing pharmaceutical company expenditure on research and development, the approval of novel oncology drugs during the past decade continues to be modest. In addition, the attrition of agents during clinical development remains high. This attrition can be attributed, at least in part, to the clinical development being underpinned by the demonstration of predictable efficacy in experimental models of human tumours. This review will focus on the range of models available for the discovery and development of anticancer drugs, from traditional subcutaneous injection of tumour cell lines to mice genetically engineered to spontaneously give rise to tumours. It will consider the best time to use the models, along with practical applications and shortcomings. Finally, and most importantly, it will describe how these models reflect the underlying cancer biology and how well they predict efficacy in the clinic. Developing a line of sight to the clinic early in a drug discovery project provides clear benefit, as it helps to guide the selection of appropriate preclinical models and facilitates the investigation of relevant biomarkers.
Collapse
Affiliation(s)
| | - Mo S Alavijeh
- Pharmidex Pharmaceutical Services, 14 Hanover Street, London, W1S 1YH, UK
| | - Alan M Palmer
- Reading School of Pharmacy, Whiteknights, Reading, RG6 6A, UK
| | - Emily R Fowler
- Pharmidex Pharmaceutical Services, 14 Hanover Street, London, W1S 1YH, UK.,Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, Scotland, UK
| | | |
Collapse
|
18
|
Zhang P, Zhou H, Lu K, Wang Y, Feng T. Circulating tumor cells in the clinical cancer diagnosis. Clin Transl Oncol 2019; 22:279-282. [DOI: 10.1007/s12094-019-02139-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
|
19
|
Poulet G, Massias J, Taly V. Liquid Biopsy: General Concepts. Acta Cytol 2019; 63:449-455. [PMID: 31091522 DOI: 10.1159/000499337] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
Liquid biopsy provides the opportunity of detecting, analyzing and monitoring cancer in various body effluents such as blood or urine instead of a fragment of cancer tissue. It is composed of different biological matrices such as circulating tumor cells (CTCs), cell free nucleic acids, exosomes or tumors "educated platelets." In addition to representing a non- or minimally invasive procedure, it should represent a better view of tumor heterogeneity and allows for real-time monitoring of cancer evolution. Recent technological and molecular advances, greatly facilitated by the use of microfluidics in many cases, have permitted large progresses both in our ability to purify and analyze liquid biopsy components. In particular, the great developments of droplet-based digital PCR and the various optimizations of next generation sequencing technologies are central to the several validations of CTC-free DNA as a strong cancer biomarker. However, complete adoption of liquid biopsy in clinics will require pursuing recent efforts in the standardization of procedures both on the pre-analytical and analytical aspects.
Collapse
Affiliation(s)
- Geoffroy Poulet
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
- Eurofin-Biomnis, Lyon, France
| | - Joséphine Massias
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Valerie Taly
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer, Paris, France,
| |
Collapse
|
20
|
Ramirez AB, Bhat R, Sahay D, De Angelis C, Thangavel H, Hedayatpour S, Dobrolecki LE, Nardone A, Giuliano M, Nagi C, Rimawi M, Osborne CK, Lewis MT, Stilwell JL, Kaldjian EP, Schiff R, Trivedi MV. Circulating tumor cell investigation in breast cancer patient-derived xenograft models by automated immunofluorescence staining, image acquisition, and single cell retrieval and analysis. BMC Cancer 2019; 19:220. [PMID: 30871481 PMCID: PMC6419430 DOI: 10.1186/s12885-019-5382-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer patient-derived xenograft (BC-PDX) models represent a continuous and reproducible source of circulating tumor cells (CTCs) for studying their role in tumor biology and metastasis. We have previously shown the utility of BC-PDX models in the study of CTCs by immunohistochemistry (IHC) on serial paraffin sections and manual microscopic identification of cytokeratin-positive cells, a method that is both low-throughput and labor-intensive. We therefore aimed to identify and characterize CTCs from small volume mouse blood samples and examined its practical workflow in a study of BC-PDX mice treated with chemotherapy using an automated imaging platform, the AccuCyte®-CyteFinder® system. METHODS CTC analysis was conducted using blood from non-tumor bearing SCID/Beige mice spiked with human breast cancer cells, BC-PDX-bearing mice, and BC-PDX mice treated with vehicle or chemotherapeutic agent(s). After red blood cell lysis, nucleated cells were mixed with transfer solution, processed onto microscope slides, and stained by immunofluorescence. The CyteFinder automated scanning microscope was used to identify CTCs, defined as nucleated cells that were human cytokeratin-positive, and mouse CD45-negative. Disaggregated primary BC-PDX tumors and lung metastatic nodules were processed using the same immunostaining protocol. Collective expression of breast cancer cell surface markers (EpCAM, EGFR, and HER2) using a cocktail of target-specific antibodies was assessed. CTCs and disaggregated tumor cells were individually retrieved from slides using the CytePicker® module for sequence analysis of a BC-PDX tumor-specific PIK3CA mutation. RESULTS The recovery rate of human cancer cells spiked into murine blood was 83 ± 12%. CTC detection was not significantly different from the IHC method. One-third of CTCs did not stain positive for cell surface markers. A PIK3CA T1035A mutation present in a BC-PDX tumor was confirmed in isolated single CTCs and cells from dissociated metastatic nodules after whole genome amplification and sequencing. CTC evaluation could be simply implemented into a preclinical PDX therapeutic study setting with substantial improvements in workflow over the IHC method. CONCLUSIONS Analysis of small volume blood samples from BC-PDX-bearing mice using the AccuCyte-CyteFinder system allows investigation of the role of CTCs in tumor biology and metastasis independent of surface marker expression.
Collapse
Affiliation(s)
| | - Raksha Bhat
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX USA
| | - Debashish Sahay
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX USA
| | - Carmine De Angelis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Hariprasad Thangavel
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX USA
| | - Sina Hedayatpour
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX USA
| | - Lacey E. Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Agostina Nardone
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Chandandeep Nagi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Mothaffar Rimawi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - C. Kent Osborne
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Michael T. Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | | | | | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Meghana V. Trivedi
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
21
|
Miller MC, Robinson PS, Wagner C, O'Shannessy DJ. The Parsortix™ Cell Separation System-A versatile liquid biopsy platform. Cytometry A 2018; 93:1234-1239. [PMID: 30107082 PMCID: PMC6586069 DOI: 10.1002/cyto.a.23571] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022]
Abstract
Cancer cells from solid tumors can enter the circulatory system and survive to subsequently form distant metastases. The CellSearch® system (Menarini-Silicon Biosystems, Huntingdon Valley, PA) was the first, FDA-cleared system that provided a reliable tool for the investigation of circulating tumor cells (CTCs), which have been shown to be strongly associated with poor survival and therapy failure. Since that time, a number of new technologies have been introduced to improve CTC detection and/or isolation for further characterization. The continued and growing interest in the "liquid biopsy" field has spurred the development of numerous different CTC technologies. However, selecting the most appropriate CTC platform for individual applications can be challenging. No consensus has yet been reached in the community regarding which liquid biopsy technology is optimal. Here, we introduce the Parsortix™ Cell Separation System (ANGLE North America, Inc., King of Prussia, PA), a microfluidic based technology that captures rare cells based on size and deformability, offers reproducibly high capture efficiency, and produces highly enriched, viable (viability dependent on preservative used) CTCs that are amenable to a multitude of downstream analyses, including the isolation and interrogation of single cells. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- M Craig Miller
- ANGLE North America, Inc., Clinical Development, King of Prussia, Pennsylvania
| | - Peggy S Robinson
- ANGLE North America, Inc., Corporate, King of Prussia, Pennsylvania
| | - Christopher Wagner
- ANGLE North America, Inc., Commercial Operations, King of Prussia, Pennsylvania
| | - Daniel J O'Shannessy
- ANGLE North America, Inc., Research & Development, King of Prussia, Pennsylvania
| |
Collapse
|