1
|
Mitamura K, Norikane T, Manabe Y, Yamamoto Y, Miyake K, Nishiyama Y. Evaluation of the Therapeutic Response and Recurrence by 18F-FLT PET in a Case of Central Nervous System-Lymphomatoid Granulomatosis. Clin Nucl Med 2025:00003072-990000000-01715. [PMID: 40358470 DOI: 10.1097/rlu.0000000000005953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025]
Abstract
A 78-year-old man visited our hospital complaining of cognitive decline and gait disturbance. MRI revealed multiple nodular enhancing lesions in the brain. He was pathologically diagnosed with central nervous system-lymphomatoid granulomatosis (CNS-LYG) by brain biopsy. Brain PET examinations using 18F-fluorothymidine (FLT) PET and 11C-methionine (MET) PET were performed. Strong accumulation in the lesions was observed with 18F-FLT PET. After treatment, the accumulation of lesions disappeared, and accumulation was observed again at the time of recurrence. In contrast, 11C-MET PET showed unclear accumulation in the lesions both before therapy and at recurrence. 18F-FLT uptake was likely reflecting the degree of cell infiltration and the disrupted blood-brain barrier. 18F-FLT PET might be a useful tool for evaluating the therapeutic response and recurrence of CNS-LYG.
Collapse
Affiliation(s)
| | | | | | | | - Keisuke Miyake
- Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | |
Collapse
|
2
|
Jaber N, Saadani H, Schats W, Aalbersberg EA, Stokkel MPM. Novel Clinical PET Tracers in the Pipeline for Melanoma. Curr Oncol Rep 2025; 27:458-471. [PMID: 40072700 DOI: 10.1007/s11912-025-01659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE The aim of this review is to provide an overview of novel clinical PET tracers in the pipeline for melanoma. Secondarily, to provide a head-to-head comparison with the current clinical standard used in clinical practice, [18F]FDG, if available. RECENT FINDINGS [18F]FDG PET/CT has become important in the clinical setting for melanoma as it serves many purposes, but lacks other important qualities due its nonspecific nature. There is an increased clinical need for specific tracers. Many new PET tracers, such as melanin-targeted and antibody-based probes, have been studied in melanoma with the intention of achieving high sensitivity detection of metastases and small lesions. There are four main groups of PET tracers in de pipeline for melanoma: melanin-, FAP-, PD-1/PD-L1- and CD8+ T cell-tracers. Melanin-targeted tracers and FAP inhibitors revealed potential for diagnostic application, whilst PD-1/PD-L1 and CD8+ T cell tracers demonstrated potential for response assessment and prediction. In conclusion, research has revealed promising results from current (ongoing) studies; however, more melanoma patients need to be included to further assess the value of these tracers.
Collapse
Affiliation(s)
- Nora Jaber
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Hanna Saadani
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.
| | - Winnie Schats
- Department of Scientific Information Service, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Else A Aalbersberg
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Marcel P M Stokkel
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| |
Collapse
|
3
|
Harbi E, Aschner M. Nuclear Medicine Imaging Techniques in Glioblastomas. Neurochem Res 2024; 49:3006-3013. [PMID: 39235579 DOI: 10.1007/s11064-024-04233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Glioblastomas are the most common primary malignant grade 4 tumors of the central nervous system (CNS). The treatment and management of such tumors requires a multidisciplinary approach and nuclear medicine techniques play an important role in this process. Glioblastoma, which recurs despite current treatments and becomes resistant to treatments, is among the tumors with the lowest survival rate, with a survival rate of approximately 8 months. Currently, the standard treatment of glioblastoma is adjuvant chemoradiotherapy after surgical resection. There have been many recent advances in the field of Nuclear Medicine in glioblastoma. PET scans are critical in determining tumor localization, pre-surgical planning, evaluation of post-treatment response and detection of recurrence. Advances in the treatment of glioblastoma and a better understanding of the biological characteristics of the disease have contributed to the development of nuclear medicine techniques. This review, in addition to other studies, is intended as a general imaging summary guide and includes some new expressions discovered in glioblastoma. This review discusses recent advances in nuclear medicine in glioblastoma.
Collapse
Affiliation(s)
- Emirhan Harbi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
4
|
Rohan T, Hložanka P, Dostál M, Kopřivová T, Macek T, Vybíhal V, Martin HJ, Šprláková-Puková A, Keřkovský M. The relationship between gadolinium enhancement and [18 F]fluorothymidine uptake in brain lesions with the use of hybrid PET/MRI. Cancer Imaging 2024; 24:110. [PMID: 39160578 PMCID: PMC11331680 DOI: 10.1186/s40644-024-00761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND To evaluate and compare the diagnostic power of [18F]FLT-PET with ceMRI in patients with brain tumours or other focal lesions. METHODS 121 patients with suspected brain tumour or those after brain tumour surgery were enroled in this retrospective study (61 females, 60 males, mean age 37.3 years, range 1-80 years). All patients underwent [18F]FLT-PET/MRI with gadolinium contrast agent application. In 118 of these patients, a final diagnosis was made, verified by histopathology or by follow-up. Agreement between ceMRI and [18F]FLT-PET of the whole study group was established. Further, sensitivity and specificity of ceMRI and [18F]FLT-PET were calculated for differentiation of high-grade vs. low-grade tumours, high-grade vs. low-grade tumours together with non-tumour lesions and for differentiation of high-grade tumours from all other verified lesions. RESULTS [18F]FLT-PET and ceMRI findings were concordant in 119 cases (98%). On closer analysis of a subset of 64 patients with verified gliomas, the sensitivity and specificity of both PET and ceMRI were identical (90% and 84%, respectively) for differentiating low-grade from high-grade tumours, if the contrast enhancement and [18F]FLT uptake were considered as hallmarks of high-grade tumour. For differentiation of high-grade tumours from low-grade tumours and lesions of nontumorous aetiology (e.g., inflammatory lesions or post-therapeutic changes) in a subgroup of 93 patients by visual evaluation, the sensitivity of both PET and ceMRI was 90%, whereas the specificity of PET was slightly higher (61%) compared to ceMRI (57%). By receiver operating characteristic analysis, the sensitivity and specificity were 82% and 74%, respectively, when the threshold of SUVmax in the tumour was set to 0.9 g/ml. CONCLUSION We demonstrated a generally very high correlation of [18F]FLT accumulation with contrast enhancement visible on ceMRI and a comparable diagnostic yield in both modalities for differentiating high-grade tumours from low-grade tumours and lesions of other aetiology.
Collapse
Affiliation(s)
- Tomáš Rohan
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
- Department of Radiology and Nuclear Medicine, Medical Faculty, Masaryk University, Brno, 625 00, Czechia
| | - Petr Hložanka
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
| | - Marek Dostál
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic.
- Department of Biophysics, Medical Faculty, Masaryk University, Brno, 625 00, Czechia.
| | - Tereza Kopřivová
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
- Department of Radiology and Nuclear Medicine, Medical Faculty, Masaryk University, Brno, 625 00, Czechia
| | - Tomáš Macek
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
- Department of Radiology and Nuclear Medicine, Medical Faculty, Masaryk University, Brno, 625 00, Czechia
| | - Václav Vybíhal
- Clinic of Neurosurgery, University Hospital Brno, Brno, 625 00, Czechia
- Clinic of Neurosurgery, Medical Faculty, Masaryk University, Brno, 625 00, Czechia
| | - Hiroko Jeannette Martin
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
| | - Andrea Šprláková-Puková
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
- Department of Radiology and Nuclear Medicine, Medical Faculty, Masaryk University, Brno, 625 00, Czechia
| | - Miloš Keřkovský
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
- Department of Radiology and Nuclear Medicine, Medical Faculty, Masaryk University, Brno, 625 00, Czechia
| |
Collapse
|
5
|
Al-Ibraheem A, Allouzi S, Abdlkadir AS, Mikhail-Lette M, Al-Rabi K, Ma'koseh M, Knoll P, Abdelrhman Z, Shahin O, Juweid ME, Paez D, Lopci E. PET/CT in leukemia: utility and future directions. Nucl Med Commun 2024; 45:550-563. [PMID: 38646840 DOI: 10.1097/mnm.0000000000001846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
2-Deoxy-2-[ 18 F]fluoro- d -glucose PET/computed tomography ([ 18 F]FDG PET/CT) has proven to be a sensitive method for the detection and evaluation of hematologic malignancies, especially lymphoma. The increasing incidence and mortality rates of leukemia have raised significant concerns. Through the utilization of whole-body imaging, [ 18 F]FDG PET/CT provides a thorough assessment of the entire bone marrow, complementing the limited insights provided by biopsy samples. In this regard, [ 18 F]FDG PET/CT has the ability to assess diverse types of leukemia The utilization of [ 18 F]FDG PET/CT has been found to be effective in evaluating leukemia spread beyond the bone marrow, tracking disease relapse, identifying Richter's transformation, and assessing the inflammatory activity associated with acute graft versus host disease. However, its role in various clinical scenarios in leukemia remains unacknowledged. Despite their less common use, some novel PET/CT radiotracers are being researched for potential use in specific scenarios in leukemia patients. Therefore, the objectives of this review are to provide a thorough assessment of the current applications of [ 18 F]FDG PET/CT in the staging and monitoring of leukemia patients, as well as the potential for an expanding role of PET/CT in leukemia patients.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC),
- Department of Radiology and Nuclear Medicine, School of Medicine, University of Jordan, Amman, Jordan,
| | - Sudqi Allouzi
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC),
| | | | - Miriam Mikhail-Lette
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria,
| | - Kamal Al-Rabi
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Mohammad Ma'koseh
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Peter Knoll
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria,
| | - Zaid Abdelrhman
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Omar Shahin
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Malik E Juweid
- Department of Radiology and Nuclear Medicine, University of Jordan, Amman, Jordan and
| | - Diana Paez
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria,
| | - Egesta Lopci
- Department of Nuclear Medicine, IRCCS - Humanitas Clinical and Research Hospital, Rozzano (MI), Italy
| |
Collapse
|
6
|
Madani MH, Riess JW, Brown LM, Cooke DT, Guo HH. Imaging of lung cancer. Curr Probl Cancer 2023:100966. [PMID: 37316337 DOI: 10.1016/j.currproblcancer.2023.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality globally. Imaging is essential in the screening, diagnosis, staging, response assessment, and surveillance of patients with lung cancer. Subtypes of lung cancer can have distinguishing imaging appearances. The most frequently used imaging modalities include chest radiography, computed tomography, magnetic resonance imaging, and positron emission tomography. Artificial intelligence algorithms and radiomics are emerging technologies with potential applications in lung cancer imaging.
Collapse
Affiliation(s)
- Mohammad H Madani
- Department of Radiology, University of California, Davis, Sacramento, CA.
| | - Jonathan W Riess
- Division of Hematology/Oncology, Department of Internal Medicine, UC Davis Medical Center, UC Davis Comprehensive Cancer Center, Sacramento, CA
| | - Lisa M Brown
- Division of General Thoracic Surgery, Department of Surgery, UC Davis Health, Sacramento, CA
| | - David T Cooke
- Division of General Thoracic Surgery, Department of Surgery, UC Davis Health, Sacramento, CA
| | - H Henry Guo
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
7
|
Dadgar H, Jokar N, Nemati R, Larvie M, Assadi M. PET tracers in glioblastoma: Toward neurotheranostics as an individualized medicine approach. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1103262. [PMID: 39355049 PMCID: PMC11440984 DOI: 10.3389/fnume.2023.1103262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/23/2023] [Indexed: 10/03/2024]
Abstract
Over the past decade, theragnostic radiopharmaceuticals have been used in nuclear medicine for both diagnosis and treatment of various tumors. In this review, we carried out a literature search to investigate and explain the role of radiotracers in the theragnostic approach to glioblastoma multiform (GBM). We primarily focused on basic and rather common positron emotion tomography (PET) radiotracers in these tumors. Subsequently, we introduced and evaluated the preclinical and clinical results of theranostic-based biomarkers including integrin receptor family, prostate-specific membrane antigen (PSMA), fibroblast activated protein (FAP), somatostatin receptors (SRS), and chemokine receptor-4 (CXCR4) for patients with GBM to confer the benefit of personalized therapy. Moreover, promising research opportunities that could have a profound impact on the treatment of GBM over the next decade are also highlighted. Preliminary results showed the potential feasibility of the theragnostic approach using theses biomarkers in GBM patients.
Collapse
Affiliation(s)
- Habibullah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Narges Jokar
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Theranostics, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Nemati
- Department of Neurology, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mykol Larvie
- Department of Radiology, Cleveland Clinic, Cleveland, Ohio
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Theranostics, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
8
|
Morikawa A, Grkovski M, Patil S, Jhaveri KL, Tang K, Humm JL, Holodny A, Beal K, Schöder H, Seidman AD. A phase I trial of sorafenib with whole brain radiotherapy (WBRT) in breast cancer patients with brain metastases and a correlative study of FLT-PET brain imaging. Breast Cancer Res Treat 2021; 188:415-425. [PMID: 34109515 PMCID: PMC11557212 DOI: 10.1007/s10549-021-06209-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Sorafenib has demonstrated anti-tumor efficacy and radiosensitizing activity preclinically and in breast cancer. We examined sorafenib in combination with whole brain radiotherapy (WBRT) and explored the [18F] 3'deoxy-3'-fluorothymidine (FLT)-PET as a novel brain imaging modality in breast cancer brain metastases. METHODS A phase I trial of WBRT + sorafenib was conducted using a 3 + 3 design with safety-expansion cohort. Sorafenib was given daily at the start of WBRT for 21 days. The primary endpoints were to determine a maximum tolerated dose (MTD) and to evaluate safety and toxicity. The secondary endpoint was CNS progression-free survival (CNS-PFS). MacDonald Criteria were used for response assessment with a correlative serial FLT-PET imaging study. RESULTS 13 pts were evaluable for dose-limiting toxicity (DLT). DLTs were grade 4 increased lipase at 200 mg (n = 1) and grade 3 rash at 400 mg (n = 3). The MTD was 200 mg. The overall response rate was 71%. Median CNS-PFS was 12.8 months (95%CI: 6.7-NR). A total of 15 pts (10 WBRT + sorafenib and 5 WBRT) were enrolled in the FLT-PET study: baseline (n = 15), 7-10 days post WBRT (FU1, n = 14), and an additional 12 week (n = 9). A decline in average SUVmax of ≥ 25% was seen in 9/10 (90%) of WBRT + sorafenib patients and 2/4 (50%) of WBRT only patients. CONCLUSIONS Concurrent WBRT and sorafenib appear safe at 200 mg daily dose with clinical activity. CNS response was favorable compared to historical controls. This combination should be considered for further efficacy evaluation. FLT-PET may be useful as an early response imaging tool for brain metastases. TRIAL AND CLINICAL REGISTRY Trial registration numbers and dates: NCT01724606 (November 12, 2012) and NCT01621906 (June 18, 2012).
Collapse
Affiliation(s)
- Aki Morikawa
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sujata Patil
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Komal L Jhaveri
- Breast Cancer Medicine Service, Evelyn Lauder Breast Center, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA
| | - Kendrick Tang
- Breast Cancer Medicine Service, Evelyn Lauder Breast Center, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrei Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Beal
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew D Seidman
- Breast Cancer Medicine Service, Evelyn Lauder Breast Center, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Aasen SN, Espedal H, Keunen O, Adamsen TCH, Bjerkvig R, Thorsen F. Current landscape and future perspectives in preclinical MR and PET imaging of brain metastasis. Neurooncol Adv 2021; 3:vdab151. [PMID: 34988446 PMCID: PMC8704384 DOI: 10.1093/noajnl/vdab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain metastasis (BM) is a major cause of cancer patient morbidity. Clinical magnetic resonance imaging (MRI) and positron emission tomography (PET) represent important resources to assess tumor progression and treatment responses. In preclinical research, anatomical MRI and to some extent functional MRI have frequently been used to assess tumor progression. In contrast, PET has only to a limited extent been used in animal BM research. A considerable culprit is that results from most preclinical studies have shown little impact on the implementation of new treatment strategies in the clinic. This emphasizes the need for the development of robust, high-quality preclinical imaging strategies with potential for clinical translation. This review focuses on advanced preclinical MRI and PET imaging methods for BM, describing their applications in the context of what has been done in the clinic. The strengths and shortcomings of each technology are presented, and recommendations for future directions in the development of the individual imaging modalities are suggested. Finally, we highlight recent developments in quantitative MRI and PET, the use of radiomics and multimodal imaging, and the need for a standardization of imaging technologies and protocols between preclinical centers.
Collapse
Affiliation(s)
- Synnøve Nymark Aasen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Heidi Espedal
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Olivier Keunen
- Translational Radiomics, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Tom Christian Holm Adamsen
- Centre for Nuclear Medicine, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- 180 °N – Bergen Tracer Development Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frits Thorsen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, P.R. China
| |
Collapse
|
10
|
The Molecular Effects of Ionizing Radiations on Brain Cells: Radiation Necrosis vs. Tumor Recurrence. Diagnostics (Basel) 2019; 9:diagnostics9040127. [PMID: 31554255 PMCID: PMC6963489 DOI: 10.3390/diagnostics9040127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
The central nervous system (CNS) is generally resistant to the effects of radiation, but higher doses, such as those related to radiation therapy, can cause both acute and long-term brain damage. The most important results is a decline in cognitive function that follows, in most cases, cerebral radionecrosis. The essence of radio-induced brain damage is multifactorial, being linked to total administered dose, dose per fraction, tumor volume, duration of irradiation and dependent on complex interactions between multiple brain cell types. Cognitive impairment has been described following brain radiotherapy, but the mechanisms leading to this adverse event remain mostly unknown. In the event of a brain tumor, on follow-up radiological imaging often cannot clearly distinguish between recurrence and necrosis, while, especially in patients that underwent radiation therapy (RT) post-surgery, positron emission tomography (PET) functional imaging, is able to differentiate tumors from reactive phenomena. More recently, efforts have been done to combine both morphological and functional data in a single exam and acquisition thanks to the co-registration of PET/MRI. The future of PET imaging to differentiate between radionecrosis and tumor recurrence could be represented by a third-generation PET tracer already used to reveal the spatial extent of brain inflammation. The aim of the following review is to analyze the effect of ionizing radiations on CNS with specific regard to effect of radiotherapy, focusing the attention on the mechanism underling the radionecrosis and the brain damage, and show the role of nuclear medicine techniques to distinguish necrosis from recurrence and to early detect of cognitive decline after treatment.
Collapse
|