1
|
Liu Q, Zhou Z, Xu P, Li S, Bu X, Zhang J, Guo J. Prognostic value of natural killer T cell related genes in acute myeloid leukemia. Cancer Cell Int 2025; 25:143. [PMID: 40223063 PMCID: PMC11995611 DOI: 10.1186/s12935-025-03779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematological malignancy characterized by complex immune microenvironment. This study aims to identify immune-related prognostic biomarkers in AML. METHODS Multiple public sequencing datasets were utilized to analyze differentially expressed genes (DEGs) in AML. Single-sample gene set enrichment analysis (ssGSEA) and weighted gene co-expression network analysis (WGCNA) were also performed. Immune cell infiltration was assessed at the single-cell level. NKT cell marker genes were intersected with the most AML-relevant module genes to identify key genes. Prognostic genes were screened using the Cox Lasso regression model, and their prognostic value was evaluated with Cox random forest and Kaplan-Meier survival analyses. Gene expression was validated using RT-qPCR and Western blot, and immune cell levels were analyzed by flow cytometry. RESULTS A total of 1,919 common DEGs were obtained between AML and controls. WGCNA revealed that the brown module was most strongly associated with AML. Single-cell analysis showed that NKT cell infiltration was significantly reduced in AML patients, consistent with ssGSEA results. Forty intersecting genes were identified between NKT cell marker genes and brown module genes. Cox Lasso regression identified 10 prognostic genes (FGFBP2, GZMB, GZMH, IKZF3, IL2RB, KLRB1, KLRC2, RHOF, RUNX3, and STAT4). A risk score model based on these genes stratified AML patients into high-risk and low-risk groups, with significant differences in survival prognosis between the two groups. RT-qPCR and Western blot analyses showed that these genes were significantly downregulated in AML patients. Flow cytometry results revealed significantly lower levels of NKT and CD8 + T cells in AML patients compared to controls. CONCLUSION This study identified key prognostic genes in AML and highlighted the critical role of NKT cells in AML pathogenesis. The study provides new insights and potential biomarkers for understanding AML biology, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Hematology, Rizhao People's Hospital, No. 126 Tai'an Road, Rizhao, Shandong, 276800, China
| | - Zhaona Zhou
- Department of Medical Imaging, Rizhao People's Hospital, No. 126 Tai'an Road, Rizhao, Shandong, 276800, China
| | - Ping Xu
- Department of Hematology, Rizhao People's Hospital, No. 126 Tai'an Road, Rizhao, Shandong, 276800, China
| | - Shuoye Li
- Department of Hematology, Rizhao People's Hospital, No. 126 Tai'an Road, Rizhao, Shandong, 276800, China
| | - Xiuli Bu
- Department of Hematology, Rizhao People's Hospital, No. 126 Tai'an Road, Rizhao, Shandong, 276800, China
| | - Jian Zhang
- Department of Hematology, Rizhao People's Hospital, No. 126 Tai'an Road, Rizhao, Shandong, 276800, China
| | - Jun Guo
- Department of Hematology, Rizhao People's Hospital, No. 126 Tai'an Road, Rizhao, Shandong, 276800, China.
| |
Collapse
|
2
|
Tasis A, Spyropoulos T, Mitroulis I. The Emerging Role of CD8 + T Cells in Shaping Treatment Outcomes of Patients with MDS and AML. Cancers (Basel) 2025; 17:749. [PMID: 40075597 PMCID: PMC11898900 DOI: 10.3390/cancers17050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
CD8+ T cells are critical players in anti-tumor immunity against solid tumors, targeted by immunotherapies. Emerging evidence suggests that CD8+ T cells also play a crucial role in anti-tumor responses and determining treatment outcomes in hematologic malignancies like myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). In this review, we focus on the implication of CD8+ T cells in the treatment response of patients with MDS and AML. First, we review reported studies of aberrant functionality and clonality of CD8+ T cells in MDS and AML, often driven by the immunosuppressive bone marrow microenvironment, which can hinder effective antitumor immunity. Additionally, we discuss the potential use of CD8+ T cell subpopulations, including memory and senescent-like subsets, as predictive biomarkers for treatment response to a variety of treatment regimens, such as hypomethylating agents, which is the standard of care for patients with higher-risk MDS, and chemotherapy which is the main treatment of patients with AML. Understanding the multifaceted role of CD8+ T cells and their interaction with malignant cells in MDS and AML will provide useful insights into their potential as prognostic/predictive biomarkers, but also uncover alternative approaches to novel treatment strategies that could reshape the therapeutic landscape, thus improving treatment efficacy, aiding in overcoming treatment resistance and improving patient survival in these challenging myeloid neoplasms.
Collapse
Affiliation(s)
- Athanasios Tasis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Theodoros Spyropoulos
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Ioannis Mitroulis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
3
|
Barakos GP, Georgoulis V, Koumpis E, Hatzimichael E. Elucidating the Role of the T Cell Receptor Repertoire in Myelodysplastic Neoplasms and Acute Myeloid Leukemia. Diseases 2025; 13:19. [PMID: 39851483 PMCID: PMC11765071 DOI: 10.3390/diseases13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
T cells, as integral components of the adaptive immune system, recognize diverse antigens through unique T cell receptors (TCRs). To achieve this, during T cell maturation, the thymus generates a wide repertoire of TCRs. This is essential for understanding cancer evolution, progression, and the efficacy of immunotherapies. Myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML) are hematological neoplasms that are characterized by immune evasion mechanisms, with immunotherapy giving only modest results thus far. Our review of TCR repertoire dynamics in these diseases reveals distinct patterns: MDS patients show increased TCR clonality with disease progression, while AML exhibits varied TCR signatures depending on disease stage and treatment response. Understanding these patterns has important clinical implications, as TCR repertoire metrics may serve as potential biomarkers for disease progression and treatment response, particularly in the context of immunotherapy and stem cell transplantation. These insights could guide patient stratification and treatment selection, ultimately improving therapeutic outcomes in MDS and AML.
Collapse
Affiliation(s)
- Georgios Petros Barakos
- First Department of Internal Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece;
| | - Vasileios Georgoulis
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| | - Epameinondas Koumpis
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| | - Eleftheria Hatzimichael
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| |
Collapse
|
4
|
Hajipirloo LK, Nabigol M, Khayami R, Karami N, Farsani MA, Navidinia AA. Construction of a stromal-related prognostic model in acute myeloid leukemia by comprehensive bioinformatics analysis. Curr Res Transl Med 2025; 73:103492. [PMID: 39818173 DOI: 10.1016/j.retram.2025.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/10/2024] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Stromal cells play a pivotal role in the tumor microenvironment (TME), significantly impacting the progression of acute myeloid leukemia (AML). This study sought to develop a stromal-related prognostic model for AML, aiming to uncover novel prognostic markers and therapeutic targets. METHODS RNA expression data and clinical profiles of AML patients were retrieved from the Cancer Genome Atlas (TCGA). The extent of stromal cell infiltration within the TME was quantified using the ESTIMATE algorithm. Associations between stromal scores and the French-American-British (FAB) classification, overall survival (OS), and the Cancer and Leukemia Group B (CALGB) cytogenetic risk categories were analyzed. Differentially expressed genes (DEGs) were identified, and gene ontology (GO) and protein-protein interaction (PPI) networks were constructed. Prognostic DEGs were selected through LASSO-cox regression analysis. A risk score model was then developed based on these DEGs. A stromal-related prognostic model (SPM) was constructed from the patients' risk scores (RS), and its efficacy was evaluated using Receiver Operating Characteristic (ROC) curves and a nomogram. The association between FAB, CALGB, age, and common mutations and SPM was also assessed. Ultimately, the SPM was validated using an external dataset from 246 patients in the TARGET-AML study. RESULTS Kaplan-Meier analysis revealed a significant association between stromal scores and patient survival (p = 0.04). LASSOCox regression identified four genes (MAP7D2, CDRT1, HOXB9, and IRX5) as highly predictive of survival. The prognostic model showed a strong correlation with overall survival, with higher scores indicating poorer outcomes (p = 1.48e-07). Older patients (over 60 years) faced significantly worse prognoses (p = 0.0055). Although no significant association was found between the SPM and the FAB classification (p = 0.063), both poor and intermediate/normal cytogenetic groups had significantly higher SPM risk scores than the favorable group (p = 0.0057 and 0.0026). External validation of the SPM in the TARGET-AML dataset confirmed a significant association with survival (p = 0.00035), with the area under the curve (AUC) for 10-year survival at 75.81 %. CONCLUSION Our research successfully established a stromal-related prognostic model in AML, offering new perspectives for prognostic evaluation and identifying potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Laya Khodayi Hajipirloo
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nabigol
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Khayami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najibe Karami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Allahbakhshian Farsani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Navidinia
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Verigou E, Chatzilygeroudi T, Lazaris V, de Lastic AL, Symeonidis A. Immunophenotyping myelodysplastic neoplasms: the role of flow cytometry in the molecular classification era. Front Oncol 2024; 14:1447001. [PMID: 39544295 PMCID: PMC11560873 DOI: 10.3389/fonc.2024.1447001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
The unique heterogenous landscape of myelodysplastic syndromes/neoplasms (MDS) has resulted in continuous redefinition of disease sub-entities, in view of the novel translational research data that have clarified several areas of the pathogenesis and the progression of the disease. The new international classifications (WHO 2022, ICC 2022) have incorporated genomic data defining phenotypical alterations, that guide clinical management of specific patient subgroups. On the other hand, for over a decade, multiparameter flow cytometry (MFC) has proven its value as a complementary diagnostic tool for these diseases and although it has never been established as a mandatory test for the baseline evaluation of MDS patients in international guidelines, it is almost universally adopted in everyday clinical practice for the assessment of suspected cytopenias through simplified scoring systems or elaborate analytical strategies for the detection of immunophenotypical dysplastic features in every hematopoietic cell lineage in the bone marrow (BM). In this review, we explore the clinically meaningful interplay of MFC data and genetic profiles of MDS patients, to reveal the currently existing and the potential future role of each methodology for routine clinical practice, and the benefit of the patients. We reviewed the existing knowledge and recent advances in the field and discuss how an integrated approach could lead to patient re-stratification and guide personalized management.
Collapse
Affiliation(s)
- Evgenia Verigou
- Hematology Division, Department of Internal Medicine, General University Hospital of Patras - School of Medicine, Patras, Greece
| | - Theodora Chatzilygeroudi
- Hematology Division, Department of Internal Medicine, General University Hospital of Patras - School of Medicine, Patras, Greece
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | | | - Anne-Lise de Lastic
- Laboratory of Immunohematology, School of Medicine, University of Patras, Patras, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, General University Hospital of Patras - School of Medicine, Patras, Greece
| |
Collapse
|
6
|
Lincz LF, Theron DZ, Barry DL, Scorgie FE, Sillar J, Sefhore O, Enjeti AK, Skelding KA. High Expression of ENO1 and Low Levels of Circulating Anti-ENO1 Autoantibodies in Patients with Myelodysplastic Neoplasms and Acute Myeloid Leukaemia. Cancers (Basel) 2024; 16:884. [PMID: 38473245 DOI: 10.3390/cancers16050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
In solid tumours, high expression of the glycolytic enzyme, α-enolase (ENO1), predicts for poor patient overall survival (OS), and circulating autoantibodies to ENO1 correlate positively with diagnosis and negatively with advanced disease. Although ENO1 is one of the most highly expressed genes in acute myeloid leukaemia (AML), its potential role as a biomarker in AML or its precursor, myelodysplastic neoplasms (MDS), has not been investigated. A meta-analysis of nine AML online datasets (n = 1419 patients) revealed that high ENO1 expression predicts for poor OS (HR = 1.22, 95% CI: 1.10-1.34, p < 0.001). Additionally, when compared to AML in remission (n = 5), ENO1 protein detected by immunohistochemistry was significantly higher at diagnosis in bone marrow from both AML (n = 5, p < 0.01) and MDS patients (n = 12, p < 0.05), and did not correlate with percentage of blasts (r = 0.28, p = 0.21). AML patients (n = 34) had lower circulating levels of ENO1 autoantibodies detected by ELISA compared to 26 MDS and 18 controls (p = 0.003). However, there was no difference in OS between AML patients with high vs. low levels of anti-ENO1 autoantibodies (p = 0.77). BM immunostaining for ENO1 and patient monitoring of anti-ENO1 autoantibody levels may be useful biomarkers for MDS and AML.
Collapse
Affiliation(s)
- Lisa F Lincz
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
| | - Danielle Z Theron
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Daniel L Barry
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Fiona E Scorgie
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
| | - Jonathan Sillar
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
- New South Wales Health Pathology, John Hunter Hospital, Lookout Road, New Lambton, NSW 2305, Australia
| | - Opelo Sefhore
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- New South Wales Health Pathology, John Hunter Hospital, Lookout Road, New Lambton, NSW 2305, Australia
| | - Anoop K Enjeti
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
- New South Wales Health Pathology, John Hunter Hospital, Lookout Road, New Lambton, NSW 2305, Australia
| | - Kathryn A Skelding
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
| |
Collapse
|
7
|
Gurska L, Gritsman K. Unveiling T cell evasion mechanisms to immune checkpoint inhibitors in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:674-687. [PMID: 37842238 PMCID: PMC10571054 DOI: 10.20517/cdr.2023.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/01/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and aggressive hematologic malignancy that is associated with a high relapse rate and poor prognosis. Despite advances in immunotherapies in solid tumors and other hematologic malignancies, AML has been particularly difficult to treat with immunotherapies, as their efficacy is limited by the ability of leukemic cells to evade T cell recognition. In this review, we discuss the common mechanisms of T cell evasion in AML: (1) increased expression of immune checkpoint molecules; (2) downregulation of antigen presentation molecules; (3) induction of T cell exhaustion; and (4) creation of an immunosuppressive environment through the increased frequency of regulatory T cells. We also review the clinical investigation of immune checkpoint inhibitors (ICIs) in AML. We discuss the limitations of ICIs, particularly in the context of T cell evasion mechanisms in AML, and we describe emerging strategies to overcome T cell evasion, including combination therapies. Finally, we provide an outlook on the future directions of immunotherapy research in AML, highlighting the need for a more comprehensive understanding of the complex interplay between AML cells and the immune system.
Collapse
Affiliation(s)
- Lindsay Gurska
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022; 24:563. [PMID: 36614005 PMCID: PMC9820412 DOI: 10.3390/ijms24010563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the bone marrow niche has become a promising new source of potential therapeutic targets, particularly for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvironment in AML development and progression, and as a source of novel therapeutic targets for AML. The main focus of this review is on drugs that modulate/target this bone marrow microenvironment and have been examined in in vivo models or clinically.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa F. Lincz
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| |
Collapse
|