1
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Metabolomic changes in children with autism. World J Clin Pediatr 2024; 13:92737. [PMID: 38947988 PMCID: PMC11212761 DOI: 10.5409/wjcp.v13.i2.92737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and repetitive behaviors. Metabolomic profiling has emerged as a valuable tool for understanding the underlying metabolic dysregulations associated with ASD. AIM To comprehensively explore metabolomic changes in children with ASD, integrating findings from various research articles, reviews, systematic reviews, meta-analyses, case reports, editorials, and a book chapter. METHODS A systematic search was conducted in electronic databases, including PubMed, PubMed Central, Cochrane Library, Embase, Web of Science, CINAHL, Scopus, LISA, and NLM catalog up until January 2024. Inclusion criteria encompassed research articles (83), review articles (145), meta-analyses (6), systematic reviews (6), case reports (2), editorials (2), and a book chapter (1) related to metabolomic changes in children with ASD. Exclusion criteria were applied to ensure the relevance and quality of included studies. RESULTS The systematic review identified specific metabolites and metabolic pathways showing consistent differences in children with ASD compared to typically developing individuals. These metabolic biomarkers may serve as objective measures to support clinical assessments, improve diagnostic accuracy, and inform personalized treatment approaches. Metabolomic profiling also offers insights into the metabolic alterations associated with comorbid conditions commonly observed in individuals with ASD. CONCLUSION Integration of metabolomic changes in children with ASD holds promise for enhancing diagnostic accuracy, guiding personalized treatment approaches, monitoring treatment response, and improving outcomes. Further research is needed to validate findings, establish standardized protocols, and overcome technical challenges in metabolomic analysis. By advancing our understanding of metabolic dysregulations in ASD, clinicians can improve the lives of affected individuals and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Pediatric, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Bahrain, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Chest Disease, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| |
Collapse
|
3
|
Day F, O’Sullivan J, Pook C. 4-Ethylphenol-fluxes, metabolism and excretion of a gut microbiome derived neuromodulator implicated in autism. Front Mol Biosci 2023; 10:1267754. [PMID: 37900921 PMCID: PMC10602680 DOI: 10.3389/fmolb.2023.1267754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Gut-microbiome-derived metabolites, such as 4-Ethylphenol [4EP], have been shown to modulate neurological health and function. Although the source of such metabolites is becoming better understood, knowledge gaps remain as to the mechanisms by which they enter host circulation, how they are transported in the body, how they are metabolised and excreted, and the way they exert their effects. High blood concentrations of host-modified 4EP, 4-ethylphenol sulfate [4EPS], are associated with an anxiety phenotype in autistic individuals. We have reviewed the existing literature and discuss mechanisms that are proposed to contribute influx from the gut microbiome, metabolism, and excretion of 4EP. We note that increased intestinal permeability is common in autistic individuals, potentially explaining increased flux of 4EP and/or 4EPS across the gut epithelium and the Blood Brain Barrier [BBB]. Similarly, kidney dysfunction, another complication observed in autistic individuals, impacts clearance of 4EP and its derivatives from circulation. Evidence indicates that accumulation of 4EPS in the brain of mice affects connectivity between subregions, particularly those linked to anxiety. However, we found no data on the presence or quantity of 4EP and/or 4EPS in human brains, irrespective of neurological status, likely due to challenges sampling this organ. We argue that the penetrative ability of 4EP is dependent on its form at the BBB and its physicochemical similarity to endogenous metabolites with dedicated active transport mechanisms across the BBB. We conclude that future research should focus on physical (e.g., ingestion of sorbents) or metabolic mechanisms (e.g., conversion to 4EP-glucuronide) that are capable of being used as interventions to reduce the flux of 4EP from the gut into the body, increase the efflux of 4EP and/or 4EPS from the brain, or increase excretion from the kidneys as a means of addressing the neurological impacts of 4EP.
Collapse
Affiliation(s)
- Francesca Day
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, Auckland, New Zealand
| | - Justin O’Sullivan
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- Australian Parkinson’s Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia
- A*STAR Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Chris Pook
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Autism, heparan sulfate and potential interventions. Exp Neurol 2022; 353:114050. [DOI: 10.1016/j.expneurol.2022.114050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022]
|
5
|
Chen B, Tong X, Zhang X, Gui W, Ai G, Huang L, Ding D, Zhang J, Kang L. Sulfation modification of dopamine in brain regulates aggregative behavior of animals. Natl Sci Rev 2021; 9:nwab163. [PMID: 35530433 PMCID: PMC9072122 DOI: 10.1093/nsr/nwab163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Behavioral plasticity and the underlying neuronal plasticity represent a fundamental capacity of animals to cope with environmental stimuli. Behavioral plasticity is controlled by complex molecular networks that act under different layers of regulation. While various molecules have been found to be involved in the regulation of plastic behaviors across species, less is known about how organisms orchestrate the activity of these molecules as part of a coherent behavioral response to varying environments. Here we discover a mechanism for the regulation of animal behavioral plasticity involving molecular sulfation in the brain, a modification of substrate molecules by sulfotransferase (ST)-catalyzed addition of a sulfonate group (SO3) from an obligate donor, 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to the substrates. We investigated aggregation behaviors of migratory locusts, which are well-known for extreme phase change plasticity triggered by population density. The processes of PAPS biosynthesis acted efficiently on induction of locust behavioral transition: Inhibition of PAPS synthesis solicited a behavioral shift from gregarious to solitarious states; external PAPS dosage, by contrast, promoted aggregation in solitarious locusts. Genetic or pharmacological intervention in the sulfation catalyzation resulted into pronounced solitarizing effects. Analysis of substrate-specific STs suggests a widespread involvement of sulfated neurotransmitters in the behavioral response. Dopamine in the brain was finally identified to be actively sulfate conjugated, and the sulfate conjugation enhanced the free DA-mediated behavioral aggregation. Similar results in Caenorhabditis elegans and mice indicate that sulfation may be involved more broadly in the modulation of animal aggregation. These findings reveal a general mechanism that effectively regulates animal social-like behavioral plasticity, possibly through sulfation-mediated modification of neural networks.
Collapse
Affiliation(s)
- Bing Chen
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiwen Tong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanying Gui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoming Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihua Huang
- School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Ding Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiangxu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Le Kang
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Abstract
This is a study of water and beverages consumed during pregnancy by mothers of children with autism. Materials included vials for water samples and a survey to describe the water and beverages. Samples were tested for sulfate and surveys evaluated for average daily levels. Results were stratified for selected regions of the United States. Areas with the highest rates of autism showed a trend toward lower levels of sulfate compared to areas with low rates of autism (28% sulfate, n = 45, p = 0.059). Severe autism was associated with low sulfate levels while mild symptoms were associated with higher levels of sulfate (- 0.32 correlation, n = 86, p < 0.01). The results suggest that sulfate may be helpful in reducing both the incidence and severity of autism.
Collapse
|
7
|
Zhang Z, Dawson PA, Piper M, Simmons DG. Postnatal N-acetylcysteine administration rescues impaired social behaviors and neurogenesis in Slc13a4 haploinsufficient mice. EBioMedicine 2019; 43:435-446. [PMID: 30956169 PMCID: PMC6557756 DOI: 10.1016/j.ebiom.2019.03.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022] Open
Abstract
Background Sulfate availability is crucial for the sulfonation of brain extracellular matrix constituents, membrane phospholipids, neurosteroids, and neurotransmitters. Observations from humans and mouse models suggest dysregulated sulfate levels may be associated with neurodevelopmental disorders, such as autism. However, the cellular mechanisms governing sulfate homeostasis within the developing or adult brain are not fully understood. Methods We utilized a mouse model with a conditional allele for the sulfate transporter Slc13a4, and a battery of behavioral tests, to assess the effects of disrupted sulfate transport on maternal behaviors, social interactions, memory, olfaction, exploratory behavior, anxiety, stress, and metabolism. Immunohistochemistry examined neurogenesis within the stem cells niches. Findings The sulfate transporter Slc13a4 plays a critical role in postnatal brain development. Slc13a4 haploinsufficiency results in significant behavioral phenotypes in adult mice, notably impairments in social interaction and long-term memory, as well as increased neurogenesis in the subventricular stem cell niche. Conditional gene deletion shows these phenotypes have a developmental origin, and that full biallelic expression of Slc13a4 is required only in postnatal development. Furthermore, administration of N-acetylcysteine (NAC) within postnatal window P14-P30 prevents the onset of phenotypes in adult Slc13a4+/− mice. Interpretation Slc13a4 haploinsufficient mice highlight a requirement for adequate sulfate supply in postnatal development for the maturation of important social interaction and memory pathways. With evidence suggesting dysregulated sulfate biology may be a feature of some neurodevelopmental disorders, the utility of sulfate levels as a biomarker of disease and NAC administration as an early preventative measure should be further explored.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Paul Anthony Dawson
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Michael Piper
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - David Gordon Simmons
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
8
|
Diagnostic and Severity-Tracking Biomarkers for Autism Spectrum Disorder. J Mol Neurosci 2018; 66:492-511. [DOI: 10.1007/s12031-018-1192-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 01/06/2023]
|
9
|
Kumar A, Dejanovic B, Hetsch F, Semtner M, Fusca D, Arjune S, Santamaria-Araujo JA, Winkelmann A, Ayton S, Bush AI, Kloppenburg P, Meier JC, Schwarz G, Belaidi AA. S-sulfocysteine/NMDA receptor-dependent signaling underlies neurodegeneration in molybdenum cofactor deficiency. J Clin Invest 2017; 127:4365-4378. [PMID: 29106383 DOI: 10.1172/jci89885] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism characterized by neurodegeneration and death in early childhood. The rapid and progressive neurodegeneration in MoCD presents a major clinical challenge and may relate to the poor understanding of the molecular mechanisms involved. Recently, we reported that treating patients with cyclic pyranopterin monophosphate (cPMP) is a successful therapy for a subset of infants with MoCD and prevents irreversible brain damage. Here, we studied S-sulfocysteine (SSC), a structural analog of glutamate that accumulates in the plasma and urine of patients with MoCD, and demonstrated that it acts as an N-methyl D-aspartate receptor (NMDA-R) agonist, leading to calcium influx and downstream cell signaling events and neurotoxicity. SSC treatment activated the protease calpain, and calpain-dependent degradation of the inhibitory synaptic protein gephyrin subsequently exacerbated SSC-mediated excitotoxicity and promoted loss of GABAergic synapses. Pharmacological blockade of NMDA-R, calcium influx, or calpain activity abolished SSC and glutamate neurotoxicity in primary murine neurons. Finally, the NMDA-R antagonist memantine was protective against the manifestation of symptoms in a tungstate-induced MoCD mouse model. These findings demonstrate that SSC drives excitotoxic neurodegeneration in MoCD and introduce NMDA-R antagonists as potential therapeutics for this fatal disease.
Collapse
Affiliation(s)
- Avadh Kumar
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Borislav Dejanovic
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Florian Hetsch
- TU Braunschweig, Zoological Institute, Division of Cell Physiology, Braunschweig, Germany
| | - Marcus Semtner
- Cellular Neurosciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Debora Fusca
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jose Angel Santamaria-Araujo
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Aline Winkelmann
- TU Braunschweig, Zoological Institute, Division of Cell Physiology, Braunschweig, Germany.,Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Scott Ayton
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jochen C Meier
- TU Braunschweig, Zoological Institute, Division of Cell Physiology, Braunschweig, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Abdel Ali Belaidi
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Sandeep MS, Nandini CD. Brain heparan sulphate proteoglycans are altered in developing foetus when exposed to in-utero hyperglycaemia. Metab Brain Dis 2017; 32:1185-1194. [PMID: 28462474 DOI: 10.1007/s11011-017-0019-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/21/2017] [Indexed: 01/14/2023]
Abstract
In-utero exposure of foetus to hyperglycaemic condition affects the growth and development of the organism. The brain is one of the first organs that start to develop during embryonic period and glycosaminoglycans (GAGs) and proteoglycans (PGs) are one of the key molecules involved in its development. But studies on the effect of hyperglycaemic conditions on brain GAGs/PGs are few and far between. We, therefore, looked into the changes in brain GAGs and PGs at various developmental stages of pre- and post-natal rats from non-diabetic and diabetic mothers as well as in adult rats induced with diabetes using a diabetogenic agent, Streptozotocin. Increased expression of GAGs especially that of heparan sulphate class in various developmental stages were observed in the brain as a result of in-utero hyperglycaemic condition but not in that of adult rats. Changes in disaccharides of heparan sulphate (HS) were observed in various developmental stages. Furthermore, various HSPGs namely, syndecans-1 and -3 and glypican-1 were overexpressed in offspring from diabetic mother. However, in adult diabetic rats, only glypican-1 was overexpressed. The offsprings from diabetic mothers became hyperphagic at the end of 8 weeks after birth which can have implications in the long run. Our results highlight the likely impact of the in-utero exposure of foetus to hyperglycaemic condition on brain GAGs/PGs compared to diabetic adult rats.
Collapse
Affiliation(s)
- M S Sandeep
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, India
| | - C D Nandini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, India.
| |
Collapse
|
11
|
Józefczuk J, Kasprzycka W, Czarnecki R, Graczyk A, Józefczuk P, Magda K, Lampart U. Homocysteine as a Diagnostic and Etiopathogenic Factor in Children with Autism Spectrum Disorder. J Med Food 2017; 20:744-749. [DOI: 10.1089/jmf.2016.0150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jan Józefczuk
- The Paediatric Ward with the Paediatric Cardiology Unit, Specialist Hospital of the Holy Spirit, Sandomierz, Poland
| | - Wiktoria Kasprzycka
- The Department of Biochemistry and Optical Spectroscopy, The Institute of Optoelectronics–The Military University of Technology, Warsaw, Poland
| | - Rafał Czarnecki
- The Paediatric Ward with the Paediatric Cardiology Unit, Specialist Hospital of the Holy Spirit, Sandomierz, Poland
| | - Alfreda Graczyk
- The Department of Biochemistry and Optical Spectroscopy, The Institute of Optoelectronics–The Military University of Technology, Warsaw, Poland
| | - Paweł Józefczuk
- The Foundation for Protection of the Immunological System “Immuno,” Warsaw, Poland
| | - Krzysztof Magda
- Marian Smoluchowski's Institute of Physics, Jagiellonian University, Cracow, Poland
| | - Urszula Lampart
- The Paediatric Ward with the Paediatric Cardiology Unit, Specialist Hospital of the Holy Spirit, Sandomierz, Poland
| |
Collapse
|
12
|
Pérez C, Sawmiller D, Tan J. The role of heparan sulfate deficiency in autistic phenotype: potential involvement of Slit/Robo/srGAPs-mediated dendritic spine formation. Neural Dev 2016; 11:11. [PMID: 27089953 PMCID: PMC4836088 DOI: 10.1186/s13064-016-0066-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/12/2016] [Indexed: 01/24/2023] Open
Abstract
Autism Spectrum Disorders (ASD) are the second most common developmental cause of disability in the United States. ASDs are accompanied with substantial economic and emotional cost. The brains of ASD patients have marked structural abnormalities, in the form of increased dendritic spines and decreased long distance connections. These structural differences may be due to deficiencies in Heparin Sulfate (HS), a proteoglycan involved in a variety of neurodevelopmental processes. Of particular interest is its role in the Slit/Robo pathway. The Slit/Robo pathway is known to be involved in the regulation of axonal guidance and dendritic spine formation. HS mediates the Slit/Robo interaction; without its presence Slit's repulsive activity is abrogated. Slit/Robo regulates dendritic spine formation through its interaction with srGAPs (slit-robo GTPase Activating Proteins), which leads to downstream signaling, actin cytoskeleton depolymerization and dendritic spine collapse. Through interference with this pathway, HS deficiency can lead to excess spine formation.
Collapse
Affiliation(s)
- Christine Pérez
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, 3515 E Fletcher Ave., Tampa, FL 33613 USA
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, 3515 E Fletcher Ave., Tampa, FL 33613 USA
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, 3515 E Fletcher Ave., Tampa, FL 33613 USA
| |
Collapse
|
13
|
Yassa HA. Autism: a form of lead and mercury toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:1016-24. [PMID: 25461563 DOI: 10.1016/j.etap.2014.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 05/22/2023]
Abstract
AIM Autism is a developmental disability characterized by severe deficits in social interaction and communication. The definite cause of autism is still unknown. The aim of this study is to find out the relation between exposure to Lead and/or mercury as heavy metals and autistic symptoms, dealing with the heavy metals with chelating agents can improve the autististic symptoms. METHOD Blood and hair samples were obtained from 45 children from Upper Egypt with autism between the ages of 2 and 10 years and 45 children served as controls in the same age range, after taken an informed consent and fill a questionnaire to assess the risk factors. The samples were analyzed blindly for lead and mercury by using atomic absorption and ICP-MS. Data from the two groups were compared, then follow up of the autistic children after treatment with chelating agents were done. RESULTS The results obtained showed significant difference among the two groups, there was high level of mercury and lead among those kids with autism. Significant decline in the blood level of lead and mercury with the use of DMSA as a chelating agent. In addition, there was decline in the autistic symptoms with the decrease in the lead and mercury level in blood. CONCLUSION Lead and mercury considered as one of the main causes of autism. Environmental exposure as well as defect in heavy metal metabolism is responsible for the high level of heavy metals. Detoxification by chelating agents had great role in improvement of those kids.
Collapse
Affiliation(s)
- Heba A Yassa
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Assiut University, Egypt..
| |
Collapse
|
14
|
Aluminum-induced entropy in biological systems: implications for neurological disease. J Toxicol 2014; 2014:491316. [PMID: 25349607 PMCID: PMC4202242 DOI: 10.1155/2014/491316] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022] Open
Abstract
Over the last 200 years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living species to this naturally abundant metal. Because of its prevalence in the earth's crust, prior to its recent uses it was regarded as inert and therefore harmless. However, Al is invariably toxic to living systems and has no known beneficial role in any biological systems. Humans are increasingly exposed to Al from food, water, medicinals, vaccines, and cosmetics, as well as from industrial occupational exposure. Al disrupts biological self-ordering, energy transduction, and signaling systems, thus increasing biosemiotic entropy. Beginning with the biophysics of water, disruption progresses through the macromolecules that are crucial to living processes (DNAs, RNAs, proteoglycans, and proteins). It injures cells, circuits, and subsystems and can cause catastrophic failures ending in death. Al forms toxic complexes with other elements, such as fluorine, and interacts negatively with mercury, lead, and glyphosate. Al negatively impacts the central nervous system in all species that have been studied, including humans. Because of the global impacts of Al on water dynamics and biosemiotic systems, CNS disorders in humans are sensitive indicators of the Al toxicants to which we are being exposed.
Collapse
|
15
|
Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. ENTROPY 2013. [DOI: 10.3390/e15041416] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
|