1
|
Vallejo F, Yánez-Sevilla D, Díaz-Robles LA, Cubillos F, Espinoza-Pérez A, Espinoza-Pérez L, Pino-Cortés E, Cereceda-Balic F. Insights into hydrothermal treatment of biomass blends: Assessing energy yield and ash content for biofuel enhancement. PLoS One 2024; 19:e0304054. [PMID: 38776338 PMCID: PMC11111091 DOI: 10.1371/journal.pone.0304054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
This study explores the Hydrothermal Carbonization (HTC) treatment of lignocellulosic biomass blends, delving into the influence of several key parameters: temperature, additive nature and dosage, residence time, and biomass composition. Rapeseeds, Pinus radiata sawdust, oat husks, and pressed olive served as the studied biomasses. One hundred twenty-eight experiments were conducted to assess the effects on mass yield (MY), energy yield (EY), higher heating value (HHV), and final ash content (ASH) by a Factorial Experimental Design. The derived model equations demonstrated a robust fit to the experimental data, averaging an R2 exceeding 0.94, affirming their predictive accuracy. The observed energy yield ranged between 65% and 80%, notably with sawdust and olive blends securing EY levels surpassing 70%, while rapeseed blends exhibited the highest HHV at 25 MJ/kg. Temperature emerged as the most influential factor, resulting in an 11% decrease in MY and a substantial 2.20 MJ/kg increase in HHV. Contrastingly, blend composition and additive presence significantly impacted ASH and EY, with all blends exhibiting increased ASH in the presence of additives. Higher initial hemicellulose and aqueous extractive content in raw biomass correlated proportionally with heightened HHV.
Collapse
Affiliation(s)
- Fidel Vallejo
- Industrial Engineering, National University of Chimborazo, Riobamba, Ecuador
| | - Diana Yánez-Sevilla
- Agroindustrial Engineering, National University of Chimborazo, Riobamba, Ecuador
| | - Luis Alonso Díaz-Robles
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile, Estación Central, Santiago, Chile
| | - Francisco Cubillos
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile, Estación Central, Santiago, Chile
| | - Andrea Espinoza-Pérez
- Program for the Development of Sustainable Production Systems (PDSPS), Faculty of Engineering, University of Santiago of Chile, Estación Central, Santiago, Chile
- Industrial Engineering Department, Faculty of Engineering, University of Santiago of Chile, Estación Central, Santiago, Chile
| | - Lorena Espinoza-Pérez
- Program for the Development of Sustainable Production Systems (PDSPS), Faculty of Engineering, University of Santiago of Chile, Estación Central, Santiago, Chile
- Industrial Engineering Department, Faculty of Engineering, University of Santiago of Chile, Estación Central, Santiago, Chile
| | - Ernesto Pino-Cortés
- Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Francisco Cereceda-Balic
- Centre for Environmental Technologies, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
2
|
Farru G, Cappai G, Carucci A, De Gioannis G, Asunis F, Milia S, Muntoni A, Perra M, Serpe A. A cascade biorefinery for grape marc: Recovery of materials and energy through thermochemical and biochemical processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157464. [PMID: 35868380 DOI: 10.1016/j.scitotenv.2022.157464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/05/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The agro-industrial sector makes a high contribution to greenhouse gas emissions; therefore, proper waste management is crucial to reduce the carbon footprint of the food chain. Hydrothermal carbonization (HTC) is a promising and flexible thermochemical process for converting organic materials into energy and added-value products that can be used in different applications. In this work, grape marc residues before and after an extraction process for recovering polyphenols were hydrothermally treated at 220 °C for 1 h. The resulting hydrochar and process water were investigated to test an innovative cascade approach aimed at a multiple product and energy recovery based on the integration of HTC with anaerobic digestion. The results show that this biorefinery approach applied to grape marc could allow to diversify and integrate its potential valorisation options. The produced hydrochars possess an increased fixed carbon content compared to the feedstock (up to +70 %) and, therefore, can be used in soil, immobilizing carbon in a stable form and partially replacing peat in growing media (up to 5 % in case of hydrochar from grape marc after extraction), saving the consumption of this natural substrate. In addition, energy can be recovered from both hydrochar by combustion and from process water through anaerobic digestion to produce biogas. Hydrochars show good properties as solid fuel similar to lignite, with an energy content of around 27 MJ kg-1 (+30 % compared to the feedstock). The anaerobic digestion of the process water allowed obtaining up to 137 mL of biomethane per gram of fed COD. Finally, while HTC process waters are suitable for biological treatment, attention must be paid to the presence of inhibiting compounds that induce acute toxic effects in aerobic conditions. The proposed approach is consistent with the principles of circular economy and could increase the overall sustainability and resilience of the agro-industrial sector.
Collapse
Affiliation(s)
- Gianluigi Farru
- DICAAR - Department of Civil - Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy.
| | - Giovanna Cappai
- DICAAR - Department of Civil - Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; IGAG-CNR - Institute of Environmental Geology and Geoengineering, National Research Council, Via Marengo 2, 09123 Cagliari, Italy
| | - Alessandra Carucci
- DICAAR - Department of Civil - Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; IGAG-CNR - Institute of Environmental Geology and Geoengineering, National Research Council, Via Marengo 2, 09123 Cagliari, Italy
| | - Giorgia De Gioannis
- DICAAR - Department of Civil - Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; IGAG-CNR - Institute of Environmental Geology and Geoengineering, National Research Council, Via Marengo 2, 09123 Cagliari, Italy
| | - Fabiano Asunis
- DICAAR - Department of Civil - Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Stefano Milia
- IGAG-CNR - Institute of Environmental Geology and Geoengineering, National Research Council, Via Marengo 2, 09123 Cagliari, Italy
| | - Aldo Muntoni
- DICAAR - Department of Civil - Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; IGAG-CNR - Institute of Environmental Geology and Geoengineering, National Research Council, Via Marengo 2, 09123 Cagliari, Italy
| | - Matteo Perra
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, Cagliari 09124, Italy
| | - Angela Serpe
- DICAAR - Department of Civil - Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; IGAG-CNR - Institute of Environmental Geology and Geoengineering, National Research Council, Via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
3
|
Thermal Analysis and Kinetic Modeling of Pyrolysis and Oxidation of Hydrochars. ENERGIES 2022. [DOI: 10.3390/en15030950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study examines the kinetics of pyrolysis and oxidation of hydrochars through thermal analysis. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques were used to investigate the decomposition profiles and develop two distributed activation energy models (DAEM) of hydrochars derived from the hydrothermal carbonization of grape seeds produced at different temperatures (180, 220, and 250 °C). Data were collected at 1, 3, and 10 °C/min between 30 and 700 °C. TGA data highlighted a decomposition profile similar to that of the raw biomass for hydrochars obtained at 180 and 220 °C (with a clear distinction between oil, cellulosic, hemicellulosic, and lignin-like compounds), while presenting a more stable profile for the 250 °C hydrochar. DSC showed a certain exothermic behavior during pyrolysis of hydrochars, an aspect also investigated through thermodynamic simulations in Aspen Plus. Regarding the DAEM, according to a Gaussian model, the severity of the treatment slightly affects kinetic parameters, with average activation energies between 193 and 220 kJ/mol. Meanwhile, the Miura–Maki model highlights the distributions of the activation energy and the pre-exponential factor during the decomposition.
Collapse
|
4
|
Barbanera M, Cardarelli A, Carota E, Castellini M, Giannoni T, Ubertini S. Valorization of winery and distillery by-products by hydrothermal carbonization. Sci Rep 2021; 11:23973. [PMID: 34907329 PMCID: PMC8671441 DOI: 10.1038/s41598-021-03501-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/25/2021] [Indexed: 11/09/2022] Open
Abstract
This work aims at finding an alternative strategy to manage the waste generated by the winemaking industry to obtain a solid biofuel and phenolic compounds. The effect of temperature (180-260 °C), residence time (1-7 h), and biomass-to-liquid ratio (0.05-0.25) on the co-hydrothermal carbonization of vine pruning and exhausted grape pomace, by using vinasse as moisture source, is studied. The effect of the variables is investigated and optimized using the Box-Behnken design of response surface methodology to maximize mass yield, fuel ratio, energy densification yield and phenols extraction yield and to minimize energy consumption. The statistical analysis shows that the carbonization temperature is a crucial parameter of the process, decreasing the product yield on one hand and improving the quality of hydrochar on the other. At the optimal conditions (246.3 °C, 1.6 h, 0.066), an hydrochar yield of 52.64% and a calorific value of 24.1 MJ/kg were obtained. Moreover, the analysis of the H/C and O/C ratios of hydrochars demonstrates that carbonisation significantly improves the fuel properties of solid biofuel. Liquid by-products obtained from the HTC process are found to contain high concentrations of organic matter but the BOD/COD ratios suggest their potential valorization by biological methods.
Collapse
Affiliation(s)
- Marco Barbanera
- Department of Economics Engineering Society and Business Organization (DEIM), University of Tuscia, Largo dell'università s.n.c., Loc. Riello, 01100, Viterbo, Italy.
| | - Alessandro Cardarelli
- grid.12597.380000 0001 2298 9743Department of Economics Engineering Society and Business Organization (DEIM), University of Tuscia, Largo dell’università s.n.c., Loc. Riello, 01100 Viterbo, Italy
| | - Eleonora Carota
- grid.12597.380000 0001 2298 9743Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Marco Castellini
- grid.12597.380000 0001 2298 9743Department of Economics Engineering Society and Business Organization (DEIM), University of Tuscia, Largo dell’università s.n.c., Loc. Riello, 01100 Viterbo, Italy
| | - Tommaso Giannoni
- grid.9027.c0000 0004 1757 3630CIRIAF—Biomass Research Centre, University of Perugia, Via G. Duranti 63, 06125 Perugia, Italy
| | - Stefano Ubertini
- grid.12597.380000 0001 2298 9743Department of Economics Engineering Society and Business Organization (DEIM), University of Tuscia, Largo dell’università s.n.c., Loc. Riello, 01100 Viterbo, Italy
| |
Collapse
|
5
|
Study of the Potential Uses of Hydrochar from Grape Pomace and Walnut Shells Generated from Hydrothermal Carbonization as an Alternative for the Revalorization of Agri-Waste in Chile. SUSTAINABILITY 2021. [DOI: 10.3390/su132212600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A myriad of resources and efforts have been devoted to assessing the possibilities of using locally sourced biomass to produce energy, reduce CO2 emissions, and, in turn, lower dependance on petroleum. Grape pomace (GP) and walnut shells (WS) are organic waste generated in Chile. Within the last decade, the potential benefits and application of biomass have received significant attention, both in terms of producing functionalized carbon materials, and the various potential applications in the field of energy storage and environmental protection. The proposed research motivation is on the development of carbonous materials through thermal decomposition processes. Few researchers have addressed the idea of developing a multipurpose carbonaceous matrix from hydrochar, and there remains a need for an efficient method to obtain hydrochar specially from grape pomace. Hence, the general objective of this research is to study the potential of grape pomace and walnut shells treated with hydrothermal carbonization (HTC) as an alternative low-cost and efficient carbonous matrix. Proximate and elemental analysis was determined to distinguish the nature of the feedstock along with the hydrochar produced. Yield and reaction severity were also studied to study the impacts of temperature and residence time for both feedstocks. Successful results from the proposed work have broad applications for increasing the sustainability biomass applications, contributing to a positive economic impact.
Collapse
|
6
|
Mesoporous Carbon from Optimized Date Stone Hydrochar by Catalytic Hydrothermal Carbonization Using Response Surface Methodology: Application to Dyes Adsorption. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/5555406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Providing efficient and environmental friendly ways to recover lignocellulosic waste remains a challenge around the world. In this study, citric acid-catalyzed hydrothermal carbonization (CHTC) was coupled with pyrolysis to convert date seed (Ds) into adsorbent material. In this regard, a central composite design (CCD) using response surface methodology (RSM) was developed to examine the influence of temperature, reaction time, and catalyst dose on the mass yield (Ym(%)) and carbon retention rate (CRR(%)) in the produced hydrochars. The optimized hydrochar (OHC-Ds) was obtained under optimal conditions (200°C, 120 min, 20 mg) and characterized by a Ym(%) and CRR(%) of 59.71% and 75.84%, respectively. Chemical activation by KOH of OHC-Ds followed by pyrolysis at 600°C resulted in an active material (AOHC-Ds) rich in carbon and characterized by a high specific surface area of 1251.5 m2/g, with the dominance of mesopores, as well as an amorphous structure comparable to graphite shown by X-ray diffraction (XRD) analysis. Adsorption experiments of two dyes on AOHC-Ds showed a high maximum adsorption capacity (Qm) of 657.89 mg g−1 for methylene blue (MB) and 384.61 mg g−1 for methyl orange (MO) compared to other conventional adsorbents. This result is due to the low acidity (pHpzc) of the surface of AOHC-Ds, which equals 6.75, and its surface, which is also rich in oxygenated functional groups such as (-OH), (C=O), and (C-O) shown by FTIR analysis. These results suggest that the coupling of CHTC and KOH activation followed by pyrolysis is an encouraging way to prepare an efficient and inexpensive adsorbent to remove dyes in wastewater.
Collapse
|
7
|
Activated Carbon from Winemaking Waste: Thermoeconomic Analysis for Large-Scale Production. ENERGIES 2020. [DOI: 10.3390/en13236462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An activated carbon manufacturing process from winemaking waste is analyzed. In that way, vine shoots conversion is studied as a basis for plant designing, and mass and energy balances of hydrothermal carbonization and physical activation are fulfilled. To develop an energy-integrated plant, a network of heat exchangers is allocated to recover heat waste, and a cogeneration cycle is designed to provide electricity and remaining heat process demands. Furthermore, thermoeconomic analysis is applied to determine the thermodynamic efficiency and the economic viability of the plant. Energy balance indicates that heat exchangers energy integration covers 48.9% of the overall demands by crossing hot and cold streams and recovering heat from residual flue gas. On the other hand, the exergy costs analysis identifies combustion of pruning wood as the main source of exergy destruction, confirming the suitability of the integration to improve the thermodynamic performance. Attending to economic costs analysis, production scale and vineyard pruning wood price are identified as a critical parameter on process profitability. With a scale of 2.5 ton/h of pruning wood carbonization, a break-event point to compete with activated carbons from biomass origin is reached. Nevertheless, cost of pruning wood is identified as another important economic parameter, pointing out the suitability of wet methods such as hydrothermal carbonization (HTC) to treat them as received form the harvest and to contribute to cutting down its prices.
Collapse
|
8
|
Coupling Hydrothermal Carbonization with Anaerobic Digestion for Sewage Sludge Treatment: Influence of HTC Liquor and Hydrochar on Biomethane Production. ENERGIES 2020. [DOI: 10.3390/en13236262] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The present study addresses the coupling of hydrothermal carbonization (HTC) with anaerobic digestion (AD) in wastewater treatment plants. The improvement in biomethane production due to the recycling back to the anaerobic digester of HTC liquor and hydrochar generated from digested sludge is investigated and proved. Mixtures of different compositions of HTC liquor and hydrochar, as well as individual substrates, were tested. The biomethane yield reached 102 ± 3 mL CH4 g−1 COD when the HTC liquor was cycled back to the AD and treated together with primary and secondary sludge. Thus, the biomethane production was almost doubled compared to that of the AD of primary and secondary sludge (55 ± 20 mL CH4 g−1 COD). The benefit is even more significant when both the HTC liquor and the hydrochar were fed to the AD of primary and secondary sludge. The biomethane yield increased up to 187 ± 18 mL CH4 g−1 COD when 45% of hydrochar, with respect to the total feedstock, was added. These results highlight the improvement that the HTC process can bring to AD, enhancing biomethane production and promoting a sustainable solution for the treatment of the HTC liquor and possibly the hydrochar itself.
Collapse
|
9
|
Cationic Dye Adsorption on Hydrochars of Winery and Citrus Juice Industries Residues: Performance, Mechanism, and Thermodynamics. ENERGIES 2020. [DOI: 10.3390/en13184686] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the increasing needs of clean water supplies, the use of biomass wastes and residues for environmental remediation is essential for environmental sustainability. In this study, the residues from winery and citrus juice industries, namely grape skin and orange peel, respectively, were first converted to hydrochars by hydrothermal carbonization (HTC) and then a cationic dye (methylene blue) adsorption was studied on hydrochars. Hydrochars from both feedstocks were produced at three different temperatures (180, 220, and 250 °C) and a fixed residence time (1 h) to evaluate the hydrochar’s performance on the dye adsorption. The hydrochars were characterized in terms of their pH, pH at point of zero charge (pHPZC), surface functionalities, and surface area. A batch adsorption study of the dye was carried out with variable adsorbate concentration, pH, and temperature. Two adsorption isotherms namely Langmuir and Freundlich models were fitted at 4, 20, and 36 °C. The thermodynamic properties of adsorption (Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS)) were evaluated from the isotherms fittings. Results showed that the dye adsorption on both hydrochars was significant and followed Langmuir isotherm. The maximum adsorption capacity on citrus waste hydrochar was higher than the winery waste hydrochar at any corresponding HTC temperature. Although hydrochars showed the lowest surface area (46.16 ± 0.11 and 34.08 ± 1.23 m2/g for citrus and winery wastes, respectively) at 180 °C, their adsorption was the highest, owing to their maximum density of total oxygen functional groups (23.24 ± 0.22 and 32.69 ± 1.39 µmol/m2 for citrus and winery wastes, respectively), which decreased with the increase in HTC temperature. This research shows a sustainable route for the production of highly effective adsorbent materials at lower HTC temperatures from citrus and winery wastes.
Collapse
|
10
|
Ischia G, Orlandi M, Fendrich MA, Bettonte M, Merzari F, Miotello A, Fiori L. Realization of a solar hydrothermal carbonization reactor: A zero-energy technology for waste biomass valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:110067. [PMID: 31932267 DOI: 10.1016/j.jenvman.2020.110067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/21/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Research around hydrothermal carbonization (HTC) has seen a huge development in recent years, materializing in the first pilot and industrial plants. Even though HTC reactions are slightly exothermic, the overall process entails energy consumption to both reach operating conditions and tackle heat losses. To face this issue and to develop a zero-energy process, this work proposes an innovative solution: the coupling of an HTC reactor with a solar concentrator, designed to fully cover the HTC energy needs. A 300 ml stainless steel HTC reactor was constructed and positioned on the focus of a parabolic dish concentrator (PDC), consisting of one parabolic mirror of 0.8 m2. To maximize the light absorption, the illuminated side of the HTC reactor was coated with a thin layer of nanostructured copper oxide, realized via electron beam deposition. Then, the effectiveness of the hybrid solar-HTC solution was demonstrated by carrying out an experimental campaign on a residual agro-biomass (grape seeds), which was treated at 180, 220, and 250 °C for 2 h. The coating confers excellent absorbing performances to the system, exhibiting an absorptance of up to 95.6% (at 300 nm wavelength). Heating times, yields, composition, and energy properties of "solar hydrochars" resemble those of studies performed in traditional HTC systems. This research work proves the feasibility of the solar-HTC prototype apparatus and opens the way to the development of a zero-energy solar-HTC technology.
Collapse
Affiliation(s)
- Giulia Ischia
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy
| | - Michele Orlandi
- Department of Physics, University of Trento, Via Sommarive 14, 38123, Trento, Italy
| | | | - Marco Bettonte
- Department of Physics, University of Trento, Via Sommarive 14, 38123, Trento, Italy
| | - Fabio Merzari
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy
| | - Antonio Miotello
- Department of Physics, University of Trento, Via Sommarive 14, 38123, Trento, Italy
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy.
| |
Collapse
|