1
|
Udaypal, Goswami RK, Mehariya S, Verma P. Advances in microalgae-based carbon sequestration: Current status and future perspectives. ENVIRONMENTAL RESEARCH 2024; 249:118397. [PMID: 38309563 DOI: 10.1016/j.envres.2024.118397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
The advancement in carbon dioxide (CO2) sequestration technology has received significant attention due to the adverse effects of CO2 on climate. The mitigation of the adverse effects of CO2 can be accomplished through its conversion into useful products or renewable fuels. In this regard, microalgae is a promising candidate due to its high photosynthesis efficiency, sustainability, and eco-friendly nature. Microalgae utilizes CO2 in the process of photosynthesis and generates biomass that can be utilized to produce various valuable products such as supplements, chemicals, cosmetics, biofuels, and other value-added products. However, at present microalgae cultivation is still restricted to producing value-added products due to high cultivation costs and lower CO2 sequestration efficiency of algal strains. Therefore, it is very crucial to develop novel techniques that can be cost-effective and enhance microalgal carbon sequestration efficiency. The main aim of the present manuscript is to explain how to optimize microalgal CO2 sequestration, integrate valuable product generation, and explore novel techniques like genetic manipulations, phytohormones, quantum dots, and AI tools to enhance the efficiency of CO2 sequestration. Additionally, this review provides an overview of the mass flow of different microalgae and their biorefinery, life cycle assessment (LCA) for achieving net-zero CO2 emissions, and the advantages, challenges, and future perspectives of current technologies. All of the reviewed approaches efficiently enhance microalgal CO2 sequestration and integrate value-added compound production, creating a green and economically profitable process.
Collapse
Affiliation(s)
- Udaypal
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
2
|
Microalgae-Based PUFAs for Food and Feed: Current Applications, Future Possibilities, and Constraints. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microalgae are currently considered an attractive source of highly valuable compounds for human and animal consumption, including polyunsaturated fatty acids (PUFAs). Several microalgae-derived compounds, such as ω-3 fatty acids, pigments, and whole dried biomasses are available on the market and are mainly produced by culturing microalgae in open ponds, which can be achieved with low setup and maintenance costs with respect to enclosed systems. However, open tanks are more susceptible to bacterial and other environmental contamination, do not guarantee a high reproducibility of algal biochemical profiles and productivities, and constrain massive cultivation to a limited number of species. Genetic engineering techniques have substantially improved over the last decade, and several model microalgae have been successfully modified to promote the accumulation of specific value-added compounds. However, transgenic strains should be cultured in closed photobioreactors (PBRs) to minimize risks of contamination of aquatic environments with allochthonous species; in addition, faster growth rates and higher yields of compounds of interest can be achieved in PBRs compared to open ponds. In this review, we present information collected about the major microalgae-derived commodities (with a special focus on PUFAs) produced at industrial scale, as well genetically-engineered microalgae to increase PUFA production. We also critically analyzed the main bottlenecks that make large-scale production of algal commodities difficult, as well as possible solutions to overcome the main problems and render the processes economically and environmentally safe.
Collapse
|
3
|
Carneiro M, Maia I, Cunha P, Guerra I, Magina T, Santos T, Schulze P, Pereira H, Malcata F, Navalho J, Silva J, Otero A, Varela J. Effects of LED lighting on Nannochloropsis oceanica grown in outdoor raceway ponds. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
O. Guimarães B, de Boer K, Gremmen P, Drinkwaard A, Wieggers R, H. Wijffels R, J. Barbosa M, D'Adamo S. Selenium enrichment in the marine microalga Nannochloropsis oceanica. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Ethanol Extraction of Polar Lipids from Nannochloropsis oceanica for Food, Feed, and Biotechnology Applications Evaluated Using Lipidomic Approaches. Mar Drugs 2021; 19:md19110593. [PMID: 34822464 PMCID: PMC8624173 DOI: 10.3390/md19110593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Nannochloropsis oceanica can accumulate lipids and is a good source of polar lipids, which are emerging as new value-added compounds with high commercial value for the food, nutraceutical, and pharmaceutical industries. Some applications may limit the extraction solvents, such as food applications that require safe food-grade solvents, such as ethanol. However, the effect of using ethanol as an extraction solvent on the quality of the extracted polar lipidome, compared to other more traditional methods, is not yet well established. In this study, the polar lipid profile of N. oceanica extracts was obtained using different solvents, including chloroform/methanol (CM), dichloromethane/methanol (DM), dichloromethane/ethanol (DE), and ethanol (E), and evaluated by modern lipidomic methods using LC-MS/MS. Ultrasonic bath (E + USB)- and ultrasonic probe (E + USP)-assisted methodologies were implemented to increase the lipid extraction yields using ethanol. The polar lipid signature and antioxidant activity of DM, E + USB, and E + USP resemble conventional CM, demonstrating a similar extraction efficiency, while the DE and ethanol extracts were significantly different. Our results showed the impact of different extraction solvents in the polar lipid composition of the final extracts and demonstrated the feasibility of E + USB and E + USP as safe and food-grade sources of polar lipids, with the potential for high-added-value biotechnological applications.
Collapse
|
6
|
Neves M, Ferreira A, Antunes M, Laranjeira Silva J, Mendes S, Gil MM, Tecelão C. Nannochloropsis oceanica as a Sustainable Source of n-3 Polyunsaturated Fatty Acids for Enrichment of Hen Eggs. APPLIED SCIENCES 2021; 11:8747. [DOI: 10.3390/app11188747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
This study aimed to evaluate the potential of the marine microalgae Nannochloropsis oceanica as a sustainable source of n-3 polyunsaturated fatty acids (n-3 PUFA) for hen eggs enrichment. During 4 weeks, hens were fed with 3% (w/w) of Nannochloropsis oceanica supplemented diet. Throughout the assay, eggs were analyzed according to several nutritional and physical parameters, namely: (i) protein, fat, and ash content; (ii) fatty acid profile; (iii) thickness and colour of the shell; (iv) total egg weight; (v) protein quality (HU) and (vi) yolk colour. A remarkable increase in eicosapentaenoic (EPA), from 2.1 ± 0.1 to 5.2 ± 1.2 mg/100 g, and docosahexaenoic (DHA), from 50.3 ± 4.0 to 105 ± 18 mg/100 g, fatty acids was observed. Yolk colour also changed significantly according to the La Roche scale, from 9.6 ± 0.8 to 11.4 ± 0.8 (more orange). Feed supplementation did not lead to changes in the remaining analyzed parameters. A shelf life study, carried out for 28 days at room temperature, showed a decrease in eggs protein quality. In conclusion, eggs from hens fed with Nannochloropsis oceanica had a yolk colour more appealing to consumers and higher levels of EPA and DHA, allowing its classification as high in n-3 PUFA (CE nº 1924/2006).
Collapse
Affiliation(s)
- Marta Neves
- MARE—Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Ana Ferreira
- MARE—Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Madalena Antunes
- MARE—Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | | | - Susana Mendes
- MARE—Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Maria M. Gil
- MARE—Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Carla Tecelão
- MARE—Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
7
|
Carneiro M, Chini Zittelli G, Cicchi B, Touloupakis E, Faraloni C, Maia IB, Pereira H, Santos T, Malcata FX, Otero A, Varela J, Torzillo G. In situ monitoring of chlorophyll a fluorescence in Nannochloropsis oceanica cultures to assess photochemical changes and the onset of lipid accumulation during nitrogen deprivation. Biotechnol Bioeng 2021; 118:4375-4388. [PMID: 34319592 DOI: 10.1002/bit.27906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 01/28/2023]
Abstract
In situ chlorophyll a fluorescence measurements were applied to monitor changes in the photochemical variables of Nannochloropsis oceanica cultures under nitrogen-deplete and nitrogen-replete (control) conditions. In addition, growth, lipid, fatty acid, and pigment contents were also followed. In the control culture, growth was promoted along with pigment content, electron transport rate (ETR), and polyunsaturated fatty acids, while total lipid content and fatty acid saturation level diminished. Under nitrogen-deplete conditions, the culture showed a higher de-epoxidation state of the xanthophyll cycle pigments. Fast transients revealed a poor processing efficiency for electron transfer beyond QA , which was in line with the low ETR due to nitrogen depletion. Lipid content and the de-epoxidation state were the first biochemical variables triggered by the change in nutrient status, which coincided with a 20% drop in the in situ effective quantum yield of PSII (ΔF'/Fm '), and a raise in the Vj measurements. A good correlation was found between the changes in ΔF'/Fm ' and lipid content (r = -0.96, p < 0.01). The results confirm the reliability and applicability of in situ fluorescence measurements to monitor lipid induction in N. oceanica.
Collapse
Affiliation(s)
- Mariana Carneiro
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, Porto, Portugal
| | | | - Bernardo Cicchi
- CNR-IBE-Consiglio Nazionale delle Ricerche-Istituto per la BioEconomia, Florence, Italy
| | - Eleftherios Touloupakis
- CNR-IRET - Consiglio Nazionale delle Ricerche-Istituto di Ricerca sugli Ecosistemi Terrestri, Florence, Italy
| | - Cecilia Faraloni
- CNR-IBE-Consiglio Nazionale delle Ricerche-Istituto per la BioEconomia, Florence, Italy
| | - Inês B Maia
- CCMAR-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Hugo Pereira
- Green Colab-Associação Oceano Verde, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Tamára Santos
- CCMAR-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Francisco X Malcata
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Ana Otero
- USC-Instituto de Acuicultura and Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - João Varela
- CCMAR-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Giuseppe Torzillo
- CNR-IBE-Consiglio Nazionale delle Ricerche-Istituto per la BioEconomia, Florence, Italy.,CIMAR-Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
8
|
Kratzer R, Murkovic M. Food Ingredients and Nutraceuticals from Microalgae: Main Product Classes and Biotechnological Production. Foods 2021; 10:1626. [PMID: 34359496 PMCID: PMC8307005 DOI: 10.3390/foods10071626] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Microalgal products are an emerging class of food, feed, and nutraceuticals. They include dewatered or dried biomass, isolated pigments, and extracted fat. The oil, protein, and antioxidant-rich microalgal biomass is used as a feed and food supplement formulated as pastes, powders, tablets, capsules, or flakes designed for daily use. Pigments such as astaxanthin (red), lutein (yellow), chlorophyll (green), or phycocyanin (bright blue) are natural food dyes used as isolated pigments or pigment-rich biomass. Algal fat extracted from certain marine microalgae represents a vegetarian source of n-3-fatty acids (eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (GLA)). Gaining an overview of the production of microalgal products is a time-consuming task. Here, requirements and options of microalgae cultivation are summarized in a concise manner, including light and nutrient requirements, growth conditions, and cultivation systems. The rentability of microalgal products remains the major obstacle in industrial application. Key challenges are the high costs of commercial-scale cultivation, harvesting (and dewatering), and product quality assurance (toxin analysis). High-value food ingredients are commonly regarded as profitable despite significant capital expenditures and energy inputs. Improvements in capital and operational costs shall enable economic production of low-value food products going down to fishmeal replacement in the future economy.
Collapse
Affiliation(s)
- Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 10-12/I, 8010 Graz, Austria;
| | - Michael Murkovic
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Petersgasse 10-12/II, 8010 Graz, Austria
| |
Collapse
|
9
|
Conde TA, Neves BF, Couto D, Melo T, Neves B, Costa M, Silva J, Domingues P, Domingues MR. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar Drugs 2021; 19:md19070357. [PMID: 34201621 PMCID: PMC8307217 DOI: 10.3390/md19070357] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
The demand for sustainable and environmentally friendly food sources and food ingredients is increasing, and microalgae are promoted as a sustainable source of essential and bioactive lipids, with high levels of omega-3 fatty acids (ω-3 FA), comparable to those of fish. However, most FA screening studies on algae are scattered or use different methodologies, preventing a true comparison of its content between microalgae. In this work, we used gas-chromatography mass-spectrometry (GC-MS) to characterize the FA profile of seven different commercial microalgae with biotechnological applications (Chlorella vulgaris, Chlorococcum amblystomatis, Scenedesmus obliquus, Tetraselmis chui, Phaeodactylum tricornutum, Spirulina sp., and Nannochloropsis oceanica). Screening for antioxidant activity was also performed to understand the relationship between FA profile and bioactivity. Microalgae exhibited specific FA profiles with a different composition, namely in the ω-3 FA profile, but with species of the same phylum showing similar tendencies. The different lipid extracts showed similar antioxidant activities, but with a low activity of the extracts of Nannochloropsis oceanica. Overall, this study provides a direct comparison of FA profiles between microalgae species, supporting the role of these species as alternative, sustainable, and healthy sources of essential lipids.
Collapse
Affiliation(s)
- Tiago A. Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bruna F. Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Margarida Costa
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|