1
|
Veerabadhran M, Chen L, Lens PNL, Nancharaiah YV. Algal-bacterial granules for circular bioeconomy: Formation mechanisms and biotechnological applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125393. [PMID: 40250180 DOI: 10.1016/j.jenvman.2025.125393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Cyanobacteria and microalgae are sustainable and renewable biocatalysts for solar energy harvesting, recovering nutrients from wastewater, reducing greenhouse gas emissions from wastewater treatment plants (WWTPs) and enable creation of a sustainable circular bioeconomy. Pure and axenic cultures of photosynthetic microorganisms have been widely studied for synthesizing bio-based products through improving the metabolic pathways via genetic engineering. However, pure cultures suffer from contamination and separation challenges when considered for environmental applications. Mixed microbial communities comprising of photosynthetic organisms and bacteria in the form of either flocs or granules have recently received a lot of attention due to their potential contribution to wastewater treatment, environmental sustainability and circular bioeconomy. The advantages of algal-bacterial granules (ABG) in WWTPs include effective elimination of contaminants and nutrients, reduction in aeration requirement, and production of biomass feedstock for downstream processing. Although ABG are an attractive option for energy positive wastewater treatment, it is not yet matured as technological option for deployment in full-scale WWTPs. Moreover, several aspects of ABG including synergistic metabolism, granulation mechanisms, granular stability, bioreactor operating conditions, cell-cell interactions, extracellular polymeric substances and bio-based products deserve more intense research. This article provides a detailed overview of algal-bacterial communities, their occurrence in natural environments, ABG cultivation in engineered settings, potential biotechnological applications and the recent progress made towards sustainable biological wastewater treatment and circular bioeconomy.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Biofouling and Biofilm Processes Section, WSCD, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Microbial Process Engineering Group, Microbial Manufacturing Engineering Centre, Chinese Academy of Sciences - Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao, 266101, Shandong, China
| | - Lin Chen
- Microbial Process Engineering Group, Microbial Manufacturing Engineering Centre, Chinese Academy of Sciences - Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao, 266101, Shandong, China.
| | - Piet N L Lens
- IHE Delft Institute for Water Education, Westvest 7, the Netherlands
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, WSCD, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
2
|
Komkhum T, Sema T, Rehman ZU, In-Na P. Carbon dioxide removal from triethanolamine solution using living microalgae-loofah biocomposites. Sci Rep 2025; 15:7247. [PMID: 40021661 PMCID: PMC11871227 DOI: 10.1038/s41598-025-90855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
Nowadays, the climate change crisis is an urgent matter in which carbon dioxide (CO2) is a major greenhouse gas contributing to global warming. Amine solvents are commonly used for CO2 capture with high efficiency and absorption rates. However, solvent regeneration consumes an extensive amount of energy. One of alternative approaches is amine regeneration through microalgae. Recently, living biocomposites, intensifying traditional suspended cultivation, have been developed. With this technology, immobilizing microalgae on biocompatible materials with binder outperformed the suspended system in terms of CO2 capture rates. In this study, living microalgae-loofah biocomposites with immobilized Scenedesmus acuminatus TISTR 8457 using 5%v/v acrylic medium were tested to remove CO2 from CO2-rich triethanolamine (TEA) solutions. The test using 1 M TEA at various CO2 loading ratios (0.2, 0.4, 0.6, and 0.8 mol CO2/mol TEA) demonstrated that the biocomposites achieved CO2 removal rates 3 to 5 times higher than the suspended cell system over 28 days, with the highest removal observed at the 1 M with 0.4 mol CO2/mol TEA (4.34 ± 0.20 gCO2/gbiomass). This study triggers a new exploration of integration between biological and chemical processes that could elevate the traditional amine-based CO2 capture capabilities. Nevertheless, pilot-scale investigations are necessary to confirm the biocomposites's efficiency.
Collapse
Affiliation(s)
- Tanakit Komkhum
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Teerawat Sema
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Zia Ur Rehman
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Arumughan V, Medipally H, Torris A, Levä T, Grimm HC, Tammelin T, Kourist R, Kontturi E. Bioinspired Nanochitin-Based Porous Constructs for Light-Driven Whole-Cell Biotransformations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413058. [PMID: 39901454 DOI: 10.1002/adma.202413058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/05/2025] [Indexed: 02/05/2025]
Abstract
Solid-state photosynthetic cell factories (SSPCFs) are a new production concept that leverages the innate photosynthetic abilities of microbes to drive the production of valuable chemicals. It addresses practical challenges such as high energy and water demand and improper light distribution associated with suspension-based culturing; however, these systems often face significant challenges related to mass transfer. The approach focuses on overcoming these limitations by carefully engineering the microstructure of the immobilization matrix through freeze-induced assembly of nanochitin building blocks. The use of nanochitins with optimized size distribution enabled the formation of macropores with lamellar spatial organization, which significantly improves light transmittance and distribution, crucial for maximizing the efficiency of photosynthetic reactions. The biomimetic crosslinking strategy, leveraging specific interactions between polyphosphate anions and primary amine groups featured on chitin fibers, produced mechanically robust and wet-resilient cryogels that maintained their functionality under operational conditions. Various model biotransformation reactions leading to value-added chemicals are performed in chitin-based matrix. It demonstrates superior or comparable performance to existing state-of-the-art matrices and suspension-based systems. The findings suggest that chitin-based cryogel approach holds significant promise for advancing the development of solid-state photosynthetic cell factories, offering a scalable solution to improve the efficiency and productivity of light-driven biotransformation.
Collapse
Affiliation(s)
- Vishnu Arumughan
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, FI-00076, Finland
| | - Hitesh Medipally
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, Royal Institute of Technology, Tomtebodavägen 23, Stockholm, 17165, Sweden
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Tuukka Levä
- VTT Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, Espoo, FI-02044, Finland
| | - Hanna C Grimm
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, Espoo, FI-02044, Finland
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, Graz, 8010, Austria
- BioTechMed-Graz, Mozartgasse 12/II, Graz, 8010, Austria
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, FI-00076, Finland
| |
Collapse
|
4
|
Kabir Ahmad SF, Kanadasan G, Lee KT, Vadivelu VM. Insight into recent advances in microalgae biogranulation in wastewater treatment. Crit Rev Biotechnol 2024; 44:1594-1609. [PMID: 38485522 DOI: 10.1080/07388551.2024.2317785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 11/20/2024]
Abstract
Microalgae-based technology is widely utilized in wastewater treatment and resource recovery. However, the practical implementation of microalgae-based technology is hampered by the difficulty in separating microalgae from treated water due to the low density of microalgae. This review is designed to find the current status of the development and utilization of microalgae biogranulation technology for better and more cost-effective wastewater treatment. This review reveals that the current trend of research is geared toward developing microalgae-bacterial granules. Most previous works were focused on studying the effect of operating conditions to improve the efficiency of wastewater treatment using microalgae-bacterial granules. Limited studies have been directed toward optimizing operating conditions to induce the secretion of extracellular polymeric substances (EPSs), which promotes the development of denser microalgae granules with enhanced settling ability. Likewise, studies on the understanding of the EPS role and the interaction between microalgae cells in forming granules are scarce. Furthermore, the majority of current research has been on the cultivation of microalgae-bacteria granules, which limits their application only in wastewater treatment. Cultivation of microalgae granules without bacteria has greater potential because it does not require additional purification and can be used for border applications.
Collapse
Affiliation(s)
| | - Gobi Kanadasan
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| | - Vel Murugan Vadivelu
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
5
|
Yang G, Zhang J, Abdullah R, Cheah WY, Zhao D, Ling TC. Comprehensive Advancements in Hydrogel, and Its Application in Microalgae Cultivation and Wastewater Treatment. J Microbiol Biotechnol 2024; 35:e2407038. [PMID: 39639489 PMCID: PMC11813343 DOI: 10.4014/jmb.2407.07038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024]
Abstract
Microalgae are recognized as a sustainable resource to produce biofertilizers, biofuels, and pigments, with the added benefits of environmental sustainability, such as carbon sequestration and pollutant removal. However, traditional cultivation methods face challenges like low biomass productivity and high operational costs. This review focuses on the innovative use of hydrogels as a medium for microalgae cultivation, which addresses these challenges by enhancing nutrient permeability, light distribution, and overall growth efficiency. Hydrogels provide a three-dimensional matrix that not only supports higher biomass yields but also facilitates the removal of pollutants from wastewater, contributing to circular economy goals. The review also explores the environmental benefits, challenges, and prospects of integrating hydrogel technology into microalgae cultivation systems. By highlighting influencing factors through which hydrogels improve microalgal productivity and environmental outcomes, this work aims to provide insights into the potential of hydrogel-based systems for sustainable development.
Collapse
Affiliation(s)
- Guangtao Yang
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jinglin Zhang
- Graduate School of Life Sciences and Health, Faculté des Sciences, Université Paris-Saclay, 91400, Orsay, France
| | - Rosazlin Abdullah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wai Yan Cheah
- Centre for Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Dehua Zhao
- Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Ryzhkov N, Colson N, Ahmed E, Pobedinskas P, Haenen K, Braun A, Janssen PJ. Electric Polarization-Dependent Absorption and Photocurrent Generation in Limnospira indica Immobilized on Boron-Doped Diamond. ACS OMEGA 2024; 9:32949-32961. [PMID: 39100327 PMCID: PMC11292817 DOI: 10.1021/acsomega.4c03925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
We present the change of light absorption of cyanobacteria in response to externally applied electrical polarization. Specifically, we studied the relation between electrical polarization and changes in light absorbance for a biophotoelectrode assembly comprising boron-doped diamond as semiconducting electrode and live Limnospira indicaPCC 8005 trichomes embedded in either polysaccharide (agar) or conductive conjugated polymer (PEDOT-PSS) matrices. Our study involves the monitoring of cyanobacterial absorbance and the measurement of photocurrents at varying wavelengths of illumination for switched electric fields, i.e., using the bioelectrode either as an anode or as cathode. We observed changes in the absorbance characteristics, indicating a direct causal relationship between electrical polarization and absorbing properties of L. indica. Our finding opens up a potential avenue for optimization of the performance of biophotovoltaic devices through controlled polarization. Furthermore, our results provide fundamental insights into the wavelength-dependent behavior of a bio photovoltaic system using live cyanobacteria.
Collapse
Affiliation(s)
- Nikolay Ryzhkov
- Empa.
Swiss Federal Laboratories for Materials Science and Technology, Laboratory
for High Performance Ceramics, Dübendorf CH-8600, Switzerland
| | - Nora Colson
- Empa.
Swiss Federal Laboratories for Materials Science and Technology, Laboratory
for High Performance Ceramics, Dübendorf CH-8600, Switzerland
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, Diepenbeek B-3590, Belgium
- IMOMEC,
IMEC vzw, Wetenschapspark
1, Diepenbeek B-3590, Belgium
| | - Essraa Ahmed
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, Diepenbeek B-3590, Belgium
- IMOMEC,
IMEC vzw, Wetenschapspark
1, Diepenbeek B-3590, Belgium
| | - Paulius Pobedinskas
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, Diepenbeek B-3590, Belgium
- IMOMEC,
IMEC vzw, Wetenschapspark
1, Diepenbeek B-3590, Belgium
| | - Ken Haenen
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, Diepenbeek B-3590, Belgium
- IMOMEC,
IMEC vzw, Wetenschapspark
1, Diepenbeek B-3590, Belgium
| | - Artur Braun
- Empa.
Swiss Federal Laboratories for Materials Science and Technology, Laboratory
for High Performance Ceramics, Dübendorf CH-8600, Switzerland
| | - Paul J. Janssen
- Institute
for Nuclear Medical Applications, Belgian
Nuclear Research Centre, Mol B-2400, Belgium
| |
Collapse
|
7
|
Chua ST, Smith A, Murthy S, Murace M, Yang H, Schertel L, Kühl M, Cicuta P, Smith AG, Wangpraseurt D, Vignolini S. Light management by algal aggregates in living photosynthetic hydrogels. Proc Natl Acad Sci U S A 2024; 121:e2316206121. [PMID: 38805271 PMCID: PMC11161743 DOI: 10.1073/pnas.2316206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
Rapid progress in algal biotechnology has triggered a growing interest in hydrogel-encapsulated microalgal cultivation, especially for the engineering of functional photosynthetic materials and biomass production. An overlooked characteristic of gel-encapsulated cultures is the emergence of cell aggregates, which are the result of the mechanical confinement of the cells. Such aggregates have a dramatic effect on the light management of gel-encapsulated photobioreactors and hence strongly affect the photosynthetic outcome. To evaluate such an effect, we experimentally studied the optical response of hydrogels containing algal aggregates and developed optical simulations to study the resultant light intensity profiles. The simulations are validated experimentally via transmittance measurements using an integrating sphere and aggregate volume analysis with confocal microscopy. Specifically, the heterogeneous distribution of cell aggregates in a hydrogel matrix can increase light penetration while alleviating photoinhibition more effectively than in a flat biofilm. Finally, we demonstrate that light harvesting efficiency can be further enhanced with the introduction of scattering particles within the hydrogel matrix, leading to a fourfold increase in biomass growth. Our study, therefore, highlights a strategy for the design of spatially efficient photosynthetic living materials that have important implications for the engineering of future algal cultivation systems.
Collapse
Affiliation(s)
- Sing Teng Chua
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Alyssa Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Swathi Murthy
- Marine Biology Section, Department of Biology, University of Copenhagen, HelsingørDK-3000, Denmark
| | - Maria Murace
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Han Yang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing100040, China
| | | | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, HelsingørDK-3000, Denmark
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Daniel Wangpraseurt
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093-0205
- Department of Nanoengineering, University of California San Diego, La Jolla, CA92093-0205
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| |
Collapse
|
8
|
Odibo A, Janpum C, Pombubpa N, Monshupanee T, Incharoensakdi A, Ur Rehman Z, In-Na P. Microalgal-bacterial immobilized co-culture as living biofilters for nutrient recovery from synthetic wastewater and their potential as biofertilizers. BIORESOURCE TECHNOLOGY 2024; 398:130509. [PMID: 38452949 DOI: 10.1016/j.biortech.2024.130509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
This study investigates nutrient recovery from synthetic municipal wastewater using co-immobilized cultures of Chlorella vulgaris TISTR 8580 (CV) and plant growth-promoting bacteria, Bacillus subtilis TISTR 1415 (BS) as living biofilters for a subsequent biofertilizer activity. The optimal condition for nutrient recovery was at the 1:1 ratio of CV/BS using mixed guar gum/carrageenan (GG/CG) binders. After 7-day wastewater treatment, the living biofilters removed 86.7 ± 0.5% of ammonium and 99.3 ± 0.3% of phosphates and were tested subsequently as biofertilizers for 20 days to grow selected plants. The highest optimal biomass and chlorophyll a content was 2 ± 0.3 g (CV/BS 3:1) and 12.4 ± 0.7 µg/g (CV/BS 1:1) from cucumber respectively, however, the close-to-neutral pH (8.0 ± 0.3) was observed from sunflower using CV/BS 1:1 living biofilters. Conclusively, the designed living biofilters exhibit the potential to recover nutrients from wastewater and be used as biofertilizers for circular agriculture.
Collapse
Affiliation(s)
- Augustine Odibo
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chalampol Janpum
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zia Ur Rehman
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
9
|
Levä T, Rissanen V, Nikkanen L, Siitonen V, Heilala M, Phiri J, Maloney TC, Kosourov S, Allahverdiyeva Y, Mäkelä M, Tammelin T. Mapping Nanocellulose- and Alginate-Based Photosynthetic Cell Factory Scaffolds: Interlinking Porosity, Wet Strength, and Gas Exchange. Biomacromolecules 2023; 24:3484-3497. [PMID: 37384553 PMCID: PMC10428157 DOI: 10.1021/acs.biomac.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Indexed: 07/01/2023]
Abstract
To develop efficient solid-state photosynthetic cell factories for sustainable chemical production, we present an interdisciplinary experimental toolbox to investigate and interlink the structure, operative stability, and gas transfer properties of alginate- and nanocellulose-based hydrogel matrices with entrapped wild-type Synechocystis PCC 6803 cyanobacteria. We created a rheological map based on the mechanical performance of the hydrogel matrices. The results highlighted the importance of Ca2+-cross-linking and showed that nanocellulose matrices possess higher yield properties, and alginate matrices possess higher rest properties. We observed higher porosity for nanocellulose-based matrices in a water-swollen state via calorimetric thermoporosimetry and scanning electron microscopy imaging. Finally, by pioneering a gas flux analysis via membrane-inlet mass spectrometry for entrapped cells, we observed that the porosity and rigidity of the matrices are connected to their gas exchange rates over time. Overall, these findings link the dynamic properties of the life-sustaining matrix to the performance of the immobilized cells in tailored solid-state photosynthetic cell factories.
Collapse
Affiliation(s)
- Tuukka Levä
- VTT
Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Ville Rissanen
- VTT
Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Lauri Nikkanen
- Molecular
Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Vilja Siitonen
- Molecular
Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Maria Heilala
- Department
of Applied Physics, Aalto University, FI-00076 Espoo, Finland
| | - Josphat Phiri
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Espoo, Finland
| | - Thaddeus C. Maloney
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Espoo, Finland
| | - Sergey Kosourov
- Molecular
Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Yagut Allahverdiyeva
- Molecular
Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Mikko Mäkelä
- VTT
Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Tekla Tammelin
- VTT
Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, FI-02044 Espoo, Finland
| |
Collapse
|
10
|
Han M, Zhang C, Ho SH. Immobilized microalgal system: An achievable idea for upgrading current microalgal wastewater treatment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 14:100227. [PMID: 36560958 PMCID: PMC9763361 DOI: 10.1016/j.ese.2022.100227] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 05/26/2023]
Abstract
Efficient wastewater treatment accompanied by sustainable "nutrients/pollutants waste-wastewater-resources/energy nexus" management is acting as a prominent and urgent global issue since severe pollution has occurred increasingly. Diverting wastes from wastewater into the value-added microalgal-biomass stream is a promising goal using biological wastewater treatment technologies. This review proposed an idea of upgrading the current microalgal wastewater treatment by using immobilized microalgal system. Firstly, a systematic analysis of microalgal immobilization technology is displayed through an in-depth discussion on why using immobilized microalgae for wastewater treatment. Subsequently, the main technical approaches employed for microalgal immobilization and pollutant removal mechanisms by immobilized microalgae are summarized. Furthermore, from high-tech technologies to promote large-scale production and application potentials in diverse wastewater and bioreactors to downstream applications lead upgradation closer, the feasibility of upgrading existing microalgal wastewater treatment into immobilized microalgal systems is thoroughly discussed. Eventually, several research directions are proposed toward the future immobilized microalgal system for microalgal wastewater treatment upgrading. Together, it appears that using immobilization for further upgrading the microalgae-based wastewater treatment can be recognized as an achievable alternative to make microalgal wastewater treatment more realistic. The information and perspectives provided in this review also offer a feasible reference for upgrading conventional microalgae-based wastewater treatment.
Collapse
|
11
|
Goodchild-Michelman IM, Church GM, Schubert MG, Tang TC. Light and carbon: Synthetic biology toward new cyanobacteria-based living biomaterials. Mater Today Bio 2023; 19:100583. [PMID: 36846306 PMCID: PMC9945787 DOI: 10.1016/j.mtbio.2023.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
Cyanobacteria are ideal candidates to use in developing carbon neutral and carbon negative technologies; they are efficient photosynthesizers and amenable to genetic manipulation. Over the past two decades, researchers have demonstrated that cyanobacteria can make sustainable, useful biomaterials, many of which are engineered living materials. However, we are only beginning to see such technologies applied at an industrial scale. In this review, we explore the ways in which synthetic biology tools enable the development of cyanobacteria-based biomaterials. First we give an overview of the ecological and biogeochemical importance of cyanobacteria and the work that has been done using cyanobacteria to create biomaterials so far. This is followed by a discussion of commonly used cyanobacteria strains and synthetic biology tools that exist to engineer cyanobacteria. Then, three case studies-bioconcrete, biocomposites, and biophotovoltaics-are explored as potential applications of synthetic biology in cyanobacteria-based materials. Finally, challenges and future directions of cyanobacterial biomaterials are discussed.
Collapse
Affiliation(s)
- Isabella M. Goodchild-Michelman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Max G. Schubert
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
12
|
Barzee TJ, El-Mashad HM, Burch AR, Franz AK, Zhang R. Immobilization of Diatom Phaeodactylum tricornutum with Filamentous Fungi and Its Kinetics. J Microbiol Biotechnol 2023; 33:251-259. [PMID: 36524340 PMCID: PMC9998213 DOI: 10.4014/jmb.2209.09042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
Immobilizing microalgae cells in a hyphal matrix can simplify harvest while producing novel mycoalgae products with potential food, feed, biomaterial, and renewable energy applications; however, limited quantitative information to describe the process and its applicability under various conditions leads to difficulties in comparing across studies and scaling-up. Here, we demonstrate the immobilization of both active and heat-deactivated marine diatom Phaeodactylum tricornutum (UTEX 466) using different loadings of fungal pellets (Aspergillus sp.) and model the process through kinetics and equilibrium models. Active P. tricornutum cells were not required for the fungal-assisted immobilization process and the fungal isolate was able to immobilize more than its original mass of microalgae. The Freundlich isotherm model adequately described the equilibrium immobilization characteristics and indicated increased normalized algae immobilization (g algae removed/g fungi loaded) under low fungal pellet loadings. The kinetics of algae immobilization by the fungal pellets were found to be adequately modeled using both a pseudo-second order model and a model previously developed for fungal-assisted algae immobilization. These results provide new insights into the behavior and potential applications of fungal-assisted algae immobilization.
Collapse
Affiliation(s)
- Tyler J Barzee
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA.,Department of Biological and Agricultural Engineering, University of California Davis, Davis, CA 95616, USA
| | - Hamed M El-Mashad
- Department of Biological and Agricultural Engineering, University of California Davis, Davis, CA 95616, USA.,Agricultural Engineering Department, Mansoura University, El Mansoura, Egypt
| | - Andrew R Burch
- Department of Chemistry, University of California, Davis, CA 95616, USA.,Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, CA 95616, USA
| | - Annaliese K Franz
- Department of Chemistry, University of California, Davis, CA 95616, USA.,Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, CA 95616, USA
| | - Ruihong Zhang
- Department of Biological and Agricultural Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Tong CY, Chua MX, Tan WH, Derek CJC. Microalgal extract as bio-coating to enhance biofilm growth of marine microalgae on microporous membranes. CHEMOSPHERE 2023; 315:137712. [PMID: 36592830 DOI: 10.1016/j.chemosphere.2022.137712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Microalgal biofilm is a popular platform for algal production, nutrient removal and carbon capture; however, it suffers from significant biofilm exfoliation under shear force exposure. Hence, a biologically-safe coating made up of algal extracellular polymeric substances (EPS) was utilized to secure the biofilm cell retention and cell loading on commercial microporous membrane (polyvinylidene fluoride), making the surfaces more hydrophobic (contact angle increase up to 12°). Results demonstrated that initial cell adhesion of three marine microalgae (Amphora coffeaeformis, Cylindrotheca fusiformis and Navicula incerta) was enhanced by at least 1.3 times higher than that of pristine control within only seven days with minimized biofilm exfoliation issue due to uniform distribution of sticky transparent exopolymer particles. Bounded extracellular polysaccharide gathered was approximately 23% higher on EPS-coated membranes to improve the biofilm's hydraulic resistance, whereas bounded extracellular protein would only be substantially elevated after the attached cells re-accommodate themselves onto the EPS pre-coating of themselves. In accounting the rises of hydrophobic protein content, biofilm was believed to be more stabilized, presumably via hydrophobic interactions. EPS biocoating would generate a groundswell of interest for bioprocess intensifications though there are lots of inherent technical and molecular challenges to be further investigated in future.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - M X Chua
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Win Hung Tan
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
14
|
Martín-Morales C, Fernández-Méndez J, Aranda P, Ruiz-Hitzky E. Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk-shell and sepiolite nanomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:522-534. [PMID: 37152474 PMCID: PMC10155620 DOI: 10.3762/bjnano.14.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 05/09/2023]
Abstract
In the present work, the bottom-up fabrication of biohybrid materials using a nanoarchitectonics approach has been applied to entrap living cells. Unicellular microorganisms, that is, cyanobacteria and yeast cells, have been immobilized in silica and silicate-based substrates organized as nanostructured materials. In a first attempt, matrices based on bionanocomposites of chitosan and alginate incorporating sepiolite clay mineral and shaped as films, beads, or foams have been explored for the immobilization of cyanobacteria. It has been observed that this type of biohybrid substrates leads to serious problems regarding the long-time survival of the encapsulated microorganisms. Alternative procedures using silica-based matrices with low sodium content, generated by sol-gel methods, as well as pre-synthesised yolk-shell bionanohybrids have been studied subsequently. Optical microscopy and SEM confirm that the silica shell microstructures provide a reduced contact between cells. The inorganic matrix increases the survival of the cells and maintains their bioactivity. Thus, the encapsulation efficiency is improved compared to the approach using a direct contact of cells in a silica matrix. Encapsulated yeast produced ethanol over a period of several days, pointing out the useful biocatalytic potential of the approach and suggesting further optimization of the present protocols.
Collapse
Affiliation(s)
- Celia Martín-Morales
- Materials Science Institute of Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
- Faculty of Science, Autonomous University of Madrid (UAM), C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Jorge Fernández-Méndez
- Faculty of Biological Sciences, Complutense University of Madrid (UCM), C/ José Antonio Novais 12, 28040 Madrid, Spain
| | - Pilar Aranda
- Materials Science Institute of Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
15
|
Tong CY, Lew JK, Derek CJC. Algal extracellular organic matter pre-treatment enhances microalgal biofilm adhesion onto microporous substrate. CHEMOSPHERE 2022; 307:135740. [PMID: 35850213 DOI: 10.1016/j.chemosphere.2022.135740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Adhesive biocoating has microstructure composed of biomolecules to entrap viable cells in a stabilized matrix over exposed surfaces. Although marine benthic diatoms are a common group of algae excreting substantial amount of extracellular polymeric substances (EPS), studies regarding the utilization of these EPS are scarce. Using the soluble EPS derived from Navicula incerta and pre-deposition of it as a thin conditioning layer on microporous polyvinylidene fluoride (PVDF) membranes, the pre-coated surface was used to investigate the cell binding affinity of three marine microalgae, namely Amphora coffeaeformis, Cylindrotheca fusiformis and Navicula incerta. Microalgae actively engaged themselves on the pre-coated membranes which was 10 times greater than the initial cell adhesion degree. Soluble EPS is mainly comprised of polysaccharide while bounded EPS is mainly comprised of protein. On EPS pre-coated membranes, N. incerta released the least amount of bounded polysaccharides (<100 mg m-2) and vice versa for the other two because EPS production is usually maximized to assist cell adhesion onto unfavorable substrates. In stark contrast, when the adaptation period (first 6 h) ended, cells began to secrete more bounded protein for cell growth, and an increasing trend of protein content found in N. incerta has verified its optimal adaptation onto the biocoating itself. On pristine PVDF membranes, the adhesion degree was ranked in ascending order: C. fusiformis, N. incerta and A. coffeaeformis. Interestingly, after the pre-coating process, the order was reported as: A. coffeaeformis, N. incerta and C. fusiformis, but it should be noted that C. fusiformis demonstrated fluctuating cell colonization degree and bounded EPS production over time. In other words, the biofilm's susceptibility was confirmed since the cells latched loosely on the membranes rather than in a biofilm matrix. Biocoating enables uniform cell distribution and firmer biofilm growth, opening the door to vast future applications in environmental bioremediation and sensing.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - J K Lew
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
16
|
Gabrielyan DA, Sinetova MA, Gabel BV, Gabrielian AK, Markelova AG, Rodionova MV, Bedbenov VS, Shcherbakova NV, Los DA. Cultivation of Chlorella sorokiniana IPPAS C-1 in Flat-Panel Photobioreactors: From a Laboratory to a Pilot Scale. Life (Basel) 2022; 12:life12091309. [PMID: 36143346 PMCID: PMC9506280 DOI: 10.3390/life12091309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/23/2022] Open
Abstract
Flat-panel photobioreactors are effective systems for microalgae cultivation. This paper presents the growth characteristics of the microalgae Chlorella sorokiniana IPPAS C-1 as a result of three-stage scale-up cultivation in a specially designed cultivation system. First, C. sorokiniana was grown aseptically in 250 mL glass vessels; then, it was diluted and inoculated into a 5-liter flat-panel horizontal photobioreactor; and, at the last stage, the culture was diluted and inoculated into a 70-liter flat-panel vertical photobioreactor. In the presented cycle, the cultured biomass increased by 326 times in 13 days (from 0.6 to 195.6 g dw), with a final biomass concentration of 2.8 g dw L−1. The modes of semi-continuous cultivation were considered. The biomass harvest and dilution of the suspension were carried out either every day or every 3–4 days. For C. sorokiniana IPPAS C-1, a conversion coefficient of optical density values to dry biomass (g L−1) was refined through a factor of 0.33. The key parameters of the photobioreactors tested in this work are discussed.
Collapse
|
17
|
Kim WH, Han Y, Lee IS, Won NI, Na YH. Development of hydrogel adhesion system for propagation of aquatic organisms. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
The efficiency of microalgae-based remediation as a green process for industrial wastewater treatment. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
In-na P, Byrne F, Caldwell GS, Lee JG. Techno-economic analysis of living biocomposites for carbon capture from breweries. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
20
|
Homburg SV, Patel AV. Silica Hydrogels as Entrapment Material for Microalgae. Polymers (Basel) 2022; 14:polym14071391. [PMID: 35406264 PMCID: PMC9002651 DOI: 10.3390/polym14071391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
Despite being a promising feedstock for food, feed, chemicals, and biofuels, microalgal production processes are still uneconomical due to slow growth rates, costly media, problematic downstreaming processes, and rather low cell densities. Immobilization via entrapment constitutes a promising tool to overcome these drawbacks of microalgal production and enables continuous processes with protection against shear forces and contaminations. In contrast to biopolymer gels, inorganic silica hydrogels are highly transparent and chemically, mechanically, thermally, and biologically stable. Since the first report on entrapment of living cells in silica hydrogels in 1989, efforts were made to increase the biocompatibility by omitting organic solvents during hydrolysis, removing toxic by-products, and replacing detrimental mineral acids or bases for pH adjustment. Furthermore, methods were developed to decrease the stiffness in order to enable proliferation of entrapped cells. This review aims to provide an overview of studied entrapment methods in silica hydrogels, specifically for rather sensitive microalgae.
Collapse
Affiliation(s)
- Sarah Vanessa Homburg
- WG Fermentation and Formulation of Biologicals and Chemicals, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
| | - Anant V Patel
- WG Fermentation and Formulation of Biologicals and Chemicals, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
| |
Collapse
|
21
|
“Nature-like” Cryoimmobilization of Phototrophic Microorganisms: New Opportunities for Their Long-Term Storage and Sustainable Use. SUSTAINABILITY 2022. [DOI: 10.3390/su14020661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It was found that immobilization of cells in poly(vinyl alcohol) (PVA) cryogel can be successfully applied for concurrent cryoimmobilization, cryoconservation and long-term storage of the cells of various phototrophic microorganisms (green and red microalgae, diatoms and cyanobacteria). For the first time, it was shown for 12 different immobilized microalgal cells that they can be stored frozen for at least 18 months while retaining a high level of viability (90%), and can further be used as an inoculum upon defrosting for cell-free biomass accumulation. Application of cryoimmobilized Chlorella vulgaris cells as inocula allowed the loading of a high concentration of the microalgal cells into the media for free biomass accumulation, thus increasing the rate of the process. It was shown that as minimum of 5 cycles of reuse of the same immobilized cells as inocula for cell accumulation could be realized when various real wastewater samples were applied as media for simultaneous microalgae cultivation and water purification.
Collapse
|