1
|
Pilarska AA, Marzec-Grządziel A, Paluch E, Pilarski K, Wolna-Maruwka A, Kubiak A, Kałuża T, Kulupa T. Biofilm Formation and Genetic Diversity of Microbial Communities in Anaerobic Batch Reactor with Polylactide (PLA) Addition. Int J Mol Sci 2023; 24:10042. [PMID: 37373189 DOI: 10.3390/ijms241210042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In this paper, an anaerobic digestion (AD) study was conducted on confectionery waste with granular polylactide (PLA) as a cell carrier. Digested sewage sludge (SS) served as the inoculum and buffering agent of systems. This article shows the results of the analyses of the key experimental properties of PLA, i.e., morphological characteristics of the microstructure, chemical composition and thermal stability of the biopolymer. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, performed using the state-of-the-art next generation sequencing (NGS) technique, revealed that the material significantly enhanced bacterial proliferation; however, it does not change microbiome biodiversity, as also confirmed via statistical analysis. More intense microbial proliferation (compared to the control sample, without PLA and not digested, CW-control, CW-confectionery waste) may be indicative of the dual role of the biopolymer-support and medium. Actinobacteria (34.87%) were the most abundant cluster in the CW-control, while the most dominant cluster in digested samples was firmicutes: in the sample without the addition of the carrier (CW-dig.) it was 68.27%, and in the sample with the addition of the carrier (CW + PLA) it was only 26.45%, comparable to the control sample (CW-control)-19.45%. Interestingly, the number of proteobacteria decreased in the CW-dig. sample (17.47%), but increased in the CW + PLA sample (39.82%) compared to the CW-control sample (32.70%). The analysis of biofilm formation dynamics using the BioFlux microfluidic system shows a significantly faster growth of the biofilm surface area for the CW + PLA sample. This information was complemented by observations of the morphological characteristics of the microorganisms using fluorescence microscopy. The images of the CW + PLA sample showed carrier sections covered with microbial consortia.
Collapse
Affiliation(s)
- Agnieszka A Pilarska
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| | - Anna Marzec-Grządziel
- Department of Agriculture Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376 Wroclaw, Poland
| | - Krzysztof Pilarski
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
| | - Agnieszka Wolna-Maruwka
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Adrianna Kubiak
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Tomasz Kałuża
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| | - Tomasz Kulupa
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| |
Collapse
|
2
|
A Review of Basic Bioinformatic Techniques for Microbial Community Analysis in an Anaerobic Digester. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Biogas production involves various types of intricate microbial populations in an anaerobic digester (AD). To understand the anaerobic digestion system better, a broad-based study must be conducted on the microbial population. Deep understanding of the complete metagenomics including microbial structure, functional gene form, similarity/differences, and relationships between metabolic pathways and product formation, could aid in optimization and enhancement of AD processes. With advancements in technologies for metagenomic sequencing, for example, next generation sequencing and high-throughput sequencing, have revolutionized the study of microbial dynamics in anaerobic digestion. This review includes a brief introduction to the basic process of metagenomics research and includes a detailed summary of the various bioinformatics approaches, viz., total investigation of data obtained from microbial communities using bioinformatics methods to expose metagenomics characterization. This includes (1) methods of DNA isolation and sequencing, (2) investigation of anaerobic microbial communities using bioinformatics techniques, (3) application of the analysis of anaerobic microbial community and biogas production, and (4) restriction and prediction of bioinformatics analysis on microbial metagenomics. The review has been concluded, giving a summarized insight into bioinformatic tools and also promoting the future prospects of integrating humungous data with artificial intelligence and neural network software.
Collapse
|
3
|
Pilarska AA, Bula K, Pilarski K, Adamski M, Wolna-Maruwka A, Kałuża T, Magda P, Boniecki P. Polylactide (PLA) as a Cell Carrier in Mesophilic Anaerobic Digestion-A New Strategy in the Management of PLA. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8113. [PMID: 36431599 PMCID: PMC9697477 DOI: 10.3390/ma15228113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The management of waste polylactide (PLA) in various solutions of thermophilic anaerobic digestion (AD) is problematic and often uneconomical. This paper proposes a different approach to the use of PLA in mesophilic AD, used more commonly on the industrial scale, which consists of assigning the function of a microbial carrier to the biopolymer. The study involved the testing of waste wafers and waste wafers and cheese in a co-substrate system, combined with digested sewage sludge. The experiment was conducted on a laboratory scale, in a batch bioreactor mode. They were used as test samples and as samples with the addition of a carrier: WF-control and WFC-control; WF + PLA and WFC + PLA. The main objective of the study was to verify the impact of PLA in the granular (PLAG) and powder (PLAP) forms on the stability and efficiency of the process. The results of the analysis of physicochemical properties of the carriers, including the critical thermal analysis by differential scanning calorimetry (DSC), as well as the amount of cellular biomass of Bacillus amyloliquefaciens obtained in a culture with the addition of the tested PLAG and PLAP, confirmed that PLA can be an effective cell carrier in mesophilic AD. The addition of PLAG produced better results for bacterial proliferation than the addition of powdered PLA. The highest level of dehydrogenase activity was maintained in the WFC + PLAG system. An increase in the volume of the methane produced for the samples digested with the PLA granules carrier was registered in the study. It went up by c.a. 26% for WF, from 356.11 m3 Mg-1 VS (WF-control) to 448.84 m3 Mg-1 VS (WF + PLAG), and for WFC, from 413.46 m3 Mg-1 VS, (WFC-control) to 519.98 m3 Mg-1 VS (WFC + PLAG).
Collapse
Affiliation(s)
- Agnieszka A. Pilarska
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| | - Karol Bula
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Krzysztof Pilarski
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
| | - Mariusz Adamski
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
| | - Agnieszka Wolna-Maruwka
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Tomasz Kałuża
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| | - Przemysław Magda
- Department of Wastewater Treatment, Aquanet S.A., Gdyńska 1, 61-477 Poznań, Poland
| | - Piotr Boniecki
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
| |
Collapse
|
4
|
Quantitative and Qualitative Changes in the Genetic Diversity of Bacterial Communities in Anaerobic Bioreactors with the Diatomaceous Earth/Peat Cell Carrier. Cells 2022; 11:cells11162571. [PMID: 36010646 PMCID: PMC9406963 DOI: 10.3390/cells11162571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
This paper analyses the impact of the diatomaceous earth/peat (DEP; 3:1) microbial carrier on changes in the bacterial microbiome and the development of biofilm in the anaerobic digestion (AD) of confectionery waste, combined with digested sewage sludge as inoculum. The physicochemical properties of the carrier material are presented, with particular focus on its morphological and dispersion characteristics, as well as adsorption and thermal properties. In this respect, the DEP system was found to be a suitable carrier for both mesophilic and thermophilic AD. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, carried out using next-generation sequencing (NGS), showed that the material has a modifying effect on the bacterial microbiome. While Actinobacteria was the most abundant cluster in the WF-control sample (WF—waste wafers), Firmicutes was the dominant cluster in the digested samples without the carrier (WF-dig.; dig.—digested) and with the carrier (WF + DEP). The same was true for the count of Proteobacteria, which decreased twofold during biodegradation in favor of Synergistetes. The Syntrophomonas cluster was identified as the most abundant genus in the two samples, particularly in WF + DEP. This information was supplemented by observations of morphological features of microorganisms carried out using fluorescence microscopy. The biodegradation process itself had a significant impact on changes in the microbiome of samples taken from anaerobic bioreactors, reducing its biodiversity. As demonstrated by the results of this innovative method, namely the BioFlux microfluidic flow system, the decrease in the number of taxa in the digested samples and the addition of DEP contributed to the microbial adhesion in the microfluidic system and the formation of a stable biofilm.
Collapse
|
5
|
Eco-Friendly and Effective Diatomaceous Earth/Peat (DEP) Microbial Carriers in the Anaerobic Biodegradation of Food Waste Products. ENERGIES 2022. [DOI: 10.3390/en15093442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This article aims to present the results of research on anaerobic digestion (AD) of waste wafers (WF-control) and co-substrate system—waste wafers and cheese (WFC-control), combined with digested sewage sludge. The aim of this study was to assess the physicochemical parameters of the diatomaceous earth/peat (DEP; 3:1) carrier material and to verify its impact on the enzymatic activity and the process performance. The experiment was conducted in a laboratory, in a periodical mode of operation of bioreactors, under mesophilic conditions. The results of analyses of morphological-dispersive, spectroscopic, adsorption, thermal, and microbiological properties confirmed that the tested carrier material can be an excellent option to implement in biotechnological processes, especially in anaerobic digestion. As part of the experiment, the substrates, feedstock, and fermenting slurry were subjected to the analysis for standard process parameters. Monitoring of the course of AD was performed by measuring the values of key parameters for the recognition of the stability of the process: pH, VFA/TA ratio (volatile fatty acids/total alkalinity), the content of NH4+, and dehydrogenase activity, as an indicator of the intensity of respiratory metabolism of microorganisms. No significant signals of destabilization of the AD process were registered. The highest dehydrogenase activity, in the course of the process, was maintained in the WFC + DEP system. The microbial carrier DEP, used for the first time in the anaerobic digestion, had a positive effect on the yield of methane production. As a result, an increase in the volume of produced biogas was obtained for samples fermented with DEP carrier material for WF + DEP by 13.18% to a cumulative methane yield of 411.04 m3 Mg−1 VS, while for WFC + DEP by 12.85% to 473.91 m3 Mg−1 VS.
Collapse
|
6
|
Degree of Biomass Conversion in the Integrated Production of Bioethanol and Biogas. ENERGIES 2021. [DOI: 10.3390/en14227763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The integrated production of bioethanol and biogas makes it possible to optimise the production of carriers from renewable raw materials. The installation analysed in this experimental paper was a hybrid system, in which waste from the production of bioethanol was used in a biogas plant with a capacity of 1 MWe. The main objective of this study was to determine the energy potential of biomass used for the production of bioethanol and biogas. Based on the results obtained, the conversion rate of the biomass—maize, in this case—into bioethanol was determined as the efficiency of the process of bioethanol production. A biomass conversion study was conducted for 12 months, during which both maize grains and stillage were sampled once per quarter (QU-I, QU-II, QU-III, QU-IV; QU—quarter) for testing. Between 342 L (QU-II) and 370 L (QU-I) of ethanol was obtained from the organic matter subjected to alcoholic fermentation. The mass that did not undergo conversion to bioethanol ranged from 269.04 kg to 309.50 kg, which represented 32.07% to 36.95% of the organic matter that was subjected to the process of bioethanol production. On that basis, it was concluded that only two-thirds of the organic matter was converted into bioethanol. The remaining part—post-production waste in the form of stillage—became a valuable raw material for the production of biogas, containing one-third of the biodegradable fraction. Under laboratory conditions, between 30.5 m3 (QU-I) and 35.6 m3 (QU-II) of biogas per 1 Mg of FM (FM—fresh matter) was obtained, while under operating conditions, between 29.2 m3 (QU-I) and 33.2 m3 (QU-II) of biogas was acquired from 1 Mg of FM. The Biochemical Methane Potential Correction Coefficient (BMPCC), which was calculated based on the authors’ formula, ranged from 3.2% to 7.4% in the analysed biogas installation.
Collapse
|
7
|
Bioethanol Production and Alkali Pulp Processes as Sources of Anionic Lignin Surfactants. Polymers (Basel) 2021; 13:polym13162703. [PMID: 34451242 PMCID: PMC8398361 DOI: 10.3390/polym13162703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Lignin is an abundant biopolymer with potential value-added applications that depend on biomass source and fractioning method. This work explores the use as emulsifiers of three native lignin-rich product coming from industrial bioethanol production and alkali or Kraft pulping. In addition to their distinctive characteristics, the different molecular organization induced by emulsification pH is expected to interact in various ways at the water-oil interface of the emulsion droplets. Initially, model oil-in-water (O/W) emulsions of a silicone oil will be studied as a function of lignin source, disperse phase concentration and emulsification pH. Once stablished the effect of such variables, emulsion formulations of three potential bitumen rejuvenators (waste vegetable cooking oil, recycled lubricating oil and a 160/220 penetration range soft bitumen). Droplet size distribution, Z-potential and viscous tests conducted on model emulsions have shown that emulsification pH strongly affects stabilization ability of the lignins tested. Regarding bitumen rejuvenators, lignin emulsification capability will be affected by surfactant source, pH and, additionally, by the dispersed phase characteristics. Lower Z-potential values shown by KL at pH 9 and 11 seem to facilitate emulsification of the less polar disperse phases formed by RLUB and bitumen. In any case, lower particle size and higher yield stress values were found for both bioethanol-derived lignins emulsifying RVO and RLUB at pH 13, which are expected to exhibit a longer stability.
Collapse
|