1
|
Ariharasutharsan G, Akilan M, Dhasarathan M, Amaravel M, Divya S, Deivamani M, Sudha M, Pandiyan M, Karthikeyan A, Senthil N. De Novo Transcriptome Assembly of Rice Bean ( Vigna umbellata) and Characterization of WRKY Transcription Factors Response to Aluminum Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3170. [PMID: 39599379 PMCID: PMC11598158 DOI: 10.3390/plants13223170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Rice bean is an underutilized legume crop cultivated in Asia, and it is a good source of protein, minerals, and essential fatty acids for human consumption. Moreover, the leaves left over after harvesting rice bean seeds contain various biological constituents beneficial to humans and animals. In our study, we performed a de-novo transcriptome assembly of rice bean, characterized the WRKY transcription factors, and studied their response to aluminum stress. A total of 46.6 million clean reads, with a GC value of 43%, were generated via transcriptome sequencing. De novo assembly of the clean reads resulted in 90,933 transcripts and 74,926 unigenes, with minimum and maximum lengths of 301 bp and 24,052 bp, and N50 values of 1801 bp and 1710 bp, respectively. A total of 27,095 and 28,378 unigenes were annotated and subjected to GO and KEGG analyses. Among the unigenes, 15,593, 20,770, and 15,385 unigenes were identified in the domains of biological process, molecular function, and cellular component, respectively. A total of 16,132 unigenes were assigned to 188 pathways, including metabolic pathways (5500) and secondary metabolite biosynthesis (2858). Transcription factor analysis revealed 4860 unigenes from 98 different transcription factor families. For WRKY, a total of 95 unigenes were identified. Further analysis revealed the diverse response of WRKY transcription factors to aluminum stress. Collectively, the results of this study boost genomic resources and provide a baseline for further research on the role of WRKY transcription factors in aluminum tolerance in rice bean.
Collapse
Affiliation(s)
- Gunasekaran Ariharasutharsan
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Department of Biotechnology, Centre of Excellence for Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625105, India
| | - Manoharan Akilan
- Department of Genetics and Plant Breeding, Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University, Trichy 620027, India
| | - Manickam Dhasarathan
- Department of Biotechnology, Centre of Excellence for Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625105, India
- Agro Climate Research Centre, Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Manivel Amaravel
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Centre of Excellence in Millets, Tamil Nadu Agricultural University, Tiruvannamalai 606603, India
| | - Sankaran Divya
- Department of Plant Molecular Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Mariyappan Deivamani
- ICAR-Krishi Vigyan Kendra, Tamil Nadu Agricultural University, Dharmapuri 636809, India
| | - Manickam Sudha
- Department of Plant Biotechnology, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Muthaiyan Pandiyan
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Eachangkottai, Thanjavur 614902, India
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Centre of Excellence for Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625105, India
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Natesan Senthil
- Department of Plant Molecular Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
- School of Post Graduate Studies, Tamil Nadu Agricultural University, Coimbatore 641003, India
| |
Collapse
|
2
|
Xu J, Wang Y, Wu K, Chen J. Identification and characterization of functionally relevant SSR markers in natural Dalbergia odorifera populations. BMC PLANT BIOLOGY 2024; 24:315. [PMID: 38654191 PMCID: PMC11036651 DOI: 10.1186/s12870-024-05019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Dalbergia odorifera is a rare and precious rosewood specie, which is valued for its amber tones, abstract figural patterns, and impermeability to water and insects. However, the information on genetic diversity and marker-assisted selection breeding of D. odorifera is still limited. Simple sequence repeat (SSR) markers are an ideal tool for genetic diversity analysis and marker-assisted molecular breeding for complex traits. RESULTS Here, we have developed SSR markers within candidate genes and used them to explore the genetic diversity among D. odorifera germplasm resources. A total of 635 SSR loci were identified. The proportions of mono-, di- and tri-nucleotide repeat motifs were 52.28%, 22.99% and 21.42%, respectively. From these, a total of 114 SSR primers were synthesized, of which 24 SSR markers displayed polymorphism (polymorphic information content (PIC) > 0.25). Subsequently, these polymorphic markers were used for the genetic diversity analysis of 106 D. odorifera individuals from 11 natural populations. According to the genetic diversity analysis of D. odorifera natural populations, the average observed heterozygosity (Ho) was 0.500, the average expected heterozygosity (He) was 0.524, and the average Shannon's information index (I) was 0.946. These indicated that the natural populations had moderate genetic diversity. AMOVA analysis showed that 5% of the total variation was within the individuals of a population, whereas 95% of the variation was among the individuals of the populations, indicating a high degree of genetic variation between populations. On the basis of their genetic structures, these populations could be divided into four groups. CONCLUSIONS Our study provides important experimental resources for genetic studies and assists in the program of molecular breeding of D. odorifera wood formation.
Collapse
Affiliation(s)
- Jieru Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yue Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Kunlin Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Jinhui Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China.
| |
Collapse
|
3
|
Zafar UB, Shahzaib M, Atif RM, Khan SH, Niaz MZ, Shahzad K, Chughtai N, Awan FS, Azhar MT, Rana IA. De novo transcriptome assembly of Dalbergia sissoo Roxb. (Fabaceae) under Botryodiplodia theobromae-induced dieback disease. Sci Rep 2023; 13:20503. [PMID: 37993468 PMCID: PMC10665356 DOI: 10.1038/s41598-023-45982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023] Open
Abstract
Dalbergia sissoo Roxb. (Shisham) is a timber-producing species of economic, cultural, and medicinal importance in the Indian subcontinent. In the past few decades, Shisham's dieback disease caused by the fungus Botryodiplodia theobromae has become an evolving issue in the subcontinent endangering its survival. To gain insights into this issue, a standard transcriptome assembly was deployed to assess the response of D. sissoo at the transcriptomic level under the stress of B. theobromae infection. For RNA isolation, the control and infected leaf tissue samples were taken from 1-year-old greenhouse-grown D. sissoo plants after 20 days of stem-base spore inoculation. cDNA synthesis was performed from these freshly isolated RNA samples that were then sent for sequencing. About 18.14 Gb (Giga base) of data was generated using the BGISEQ-500 sequencing platform. In terms of Unigenes, 513,821 were identified after a combined assembly of all samples and then filtering the abundance. The total length of Unigenes, their average length, N50, and GC-content were 310,523,693 bp, 604 bp, 1,101 bp, and 39.95% respectively. The Unigenes were annotated using 7 functional databases i.e., 200,355 (NR: 38.99%), 164,973 (NT: 32.11%), 123,733 (Swissprot: 24.08%), 142,580 (KOG: 27.75%), 139,588 (KEGG: 27.17%), 99,752 (GO: 19.41%), and 137,281 (InterPro: 26.72%). Furthermore, the Transdecoder detected 115,762 CDS. In terms of SSR (Simple Sequence Repeat) markers, 62,863 of them were distributed on 51,508 Unigenes and on the predicted 4673 TF (Transcription Factor) coding Unigenes. A total of 16,018 up- and 19,530 down-regulated Differentially Expressed Genes (DEGs) were also identified. Moreover, the Plant Resistance Genes (PRGs) had a count of 9230. We are hopeful that in the future, these identified Unigenes, SSR markers, DEGs and PRGs will provide the prerequisites for managing Shisham dieback disease, its breeding, and in tree improvement programs.
Collapse
Affiliation(s)
- Ummul Buneen Zafar
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Shahzaib
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Rana Muhammad Atif
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- National Center for Genome Editing (Gene Editing of Biological Agents for Nutritional, Biochemicals and Therapeutic Purposes), University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Muhammad Zeeshan Niaz
- Plant Pathology Research Institute, Ayub Agriculture Research Institute, Faisalabad, 38850, Punjab, Pakistan
| | - Khalid Shahzad
- Punjab Forestry Research Institute, Faisalabad, 37620, Punjab, Pakistan
| | - Nighat Chughtai
- Punjab Forestry Research Institute, Faisalabad, 37620, Punjab, Pakistan
| | - Faisal Saeed Awan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Iqrar Ahmad Rana
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
- National Center for Genome Editing (Gene Editing of Biological Agents for Nutritional, Biochemicals and Therapeutic Purposes), University of Agriculture, Faisalabad, Punjab, Pakistan.
| |
Collapse
|
4
|
Wang Y, Xu J, Zhao W, Li J, Chen J. Genome-wide identification, characterization, and genetic diversity of CCR gene family in Dalbergia odorifera. FRONTIERS IN PLANT SCIENCE 2022; 13:1064262. [PMID: 36600926 PMCID: PMC9806228 DOI: 10.3389/fpls.2022.1064262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Lignin is a complex aromatic polymer plays major biological roles in maintaining the structure of plants and in defending them against biotic and abiotic stresses. Cinnamoyl-CoA reductase (CCR) is the first enzyme in the lignin-specific biosynthetic pathway, catalyzing the conversion of hydroxycinnamoyl-CoA into hydroxy cinnamaldehyde. Dalbergia odorifera T. Chen is a rare rosewood species for furniture, crafts and medicine. However, the CCR family genes in D. odorifera have not been identified, and their function in lignin biosynthesis remain uncertain. METHODS AND RESULTS Here, a total of 24 genes, with their complete domains were identified. Detailed sequence characterization and multiple sequence alignment revealed that the DoCCR protein sequences were relatively conserved. They were divided into three subfamilies and were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that seven DoCCRs were grouped together with functionally characterized CCRs of dicotyledons involved in developmental lignification. Synteny analysis showed that segmental and tandem duplications were crucial in the expansion of CCR family in D. odorifera, and purifying selection emerged as the main force driving these genes evolution. Cis-acting elements in the putative promoter regions of DoCCRs were mainly associated with stress, light, hormones, and growth/development. Further, analysis of expression profiles from the RNA-seq data showed distinct expression patterns of DoCCRs among different tissues and organs, as well as in response to stem wounding. Additionally, 74 simple sequence repeats (SSRs) were identified within 19 DoCCRs, located in the intron or untranslated regions (UTRs), and mononucleotide predominated. A pair of primers with high polymorphism and good interspecific generality was successfully developed from these SSRs, and 7 alleles were amplified in 105 wild D. odorifera trees from 17 areas covering its whole native distribution. DISCUSSION Overall, this study provides a basis for further functional dissection of CCR gene families, as well as breeding improvement for wood properties and stress resistance in D. odorifera.
Collapse
Affiliation(s)
- Yue Wang
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jieru Xu
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Wenxiu Zhao
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jia Li
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jinhui Chen
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Research Institute of Forestry, Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| |
Collapse
|
5
|
Liu H, Zhang Y, Wang Z, Su Y, Wang T. Development and Application of EST-SSR Markers in Cephalotaxus oliveri From Transcriptome Sequences. Front Genet 2021; 12:759557. [PMID: 34868238 PMCID: PMC8635753 DOI: 10.3389/fgene.2021.759557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Cephalotaxus oliveri is an endemic conifer of China, which has medicinal and ornamental value. However, the limited molecular markers and genetic information are insufficient for further genetic studies of this species. In this study, we characterized and developed the EST-SSRs from transcriptome sequences for the first time. The results showed that a total of 5089 SSRs were identified from 36446 unigenes with a density of one SSR per 11.1 kb. The most common type was trinucleotide repeats, excluding mononucleotide repeats, followed by dinucleotide repeats. AAG/CTT and AT/AT exhibited the highest frequency in the trinucleotide and dinucleotide repeats, respectively. Of the identified SSRs, 671, 1125, and 1958 SSRs were located in CDS, 3′UTR, and 5′UTR, respectively. Functional annotation showed that the SSR-containing unigenes were involved in growth and development with various biological functions. Among successfully designed primer pairs, 238 primer pairs were randomly selected for amplification and validation of EST-SSR markers and 47 primer pairs were identified as polymorphic. Finally, 28 high-polymorphic primers were used for genetic analysis and revealed a moderate level of genetic diversity. Seven natural C. oliveri sampling sites were divided into two genetic groups. Furthermore, the 28 EST-SSRs had 96.43, 71.43, and 78.57% of transferability rate in Cephalotaxus fortune, Ametotaxus argotaenia, and Pseudotaxus chienii, respectively. These markers developed in this study lay the foundation for further genetic and adaptive evolution studies in C. oliveri and related species.
Collapse
Affiliation(s)
- Hanjing Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuli Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Transcriptome sequencing and microsatellite marker discovery in Ailanthus altissima (Mill.) Swingle (Simaroubaceae). Mol Biol Rep 2021; 48:2007-2023. [PMID: 33730287 DOI: 10.1007/s11033-020-05402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/25/2020] [Indexed: 10/21/2022]
Abstract
Ailanthus altissima Swingle, is a tree species native to East Asia and has a great potential in decorative, bioenergy and industrial applications in many countries. To date, despite its commercial importance, the genomic and genetic resources available for this species are still insufficient. In this study, we characterized the transcriptome of A. altissima and developed thirteen EST-SSRs (expressed sequence tag-simple sequence repeats) based on Illumina paired-end RNA sequencing (RNA-seq). Besides, we developed ten polymorphic chloroplast microsatellite (cpSSR) markers using the available chloroplast genome of A. altissima. The transcriptome data produced 87,797 unigenes, of which 64,891 (73.91%) unigenes were successfully annotated in at least one protein database. For cpSSR markers the number of detected alleles (N) per marker varied from three at cpSSR12 to twelve at cpSSR8, the unbiased haploid diversity indices (uh) varied from 0.111 to 0.485, and haploid diversity indices (h) ranged from 0.101 to 0.444 with an average unbiased haploid diversity index (uh) of 0.274. Overall, a total of 65 different cpSSR alleles were identified at the ten loci among 165 individuals of A. altissima. The allele number per locus for EST-SSRs varied from 2.143 to 9.357, and the values of observed and expected heterozygosity ranged from 0.312 to 1.000 and 0.505 to 0.826, respectively. The molecular markers developed in this study will facilitate future genetic diversity, population structure, long distance-gene transfer and pollen-based gene flow analyses of A. altissima populations from its known distribution ranges in China focusing on planted and natural forest stands.
Collapse
|
7
|
Zhang C, Wu Z, Jiang X, Li W, Lu Y, Wang K. De novo transcriptomic analysis and identification of EST-SSR markers in Stephanandra incisa. Sci Rep 2021; 11:1059. [PMID: 33441871 PMCID: PMC7806653 DOI: 10.1038/s41598-020-80329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/16/2020] [Indexed: 02/03/2023] Open
Abstract
Stephanandra incisa is a wild-type shrub with beautiful leaves and white flowers and is commonly used as a garden decoration accessory. However, the limited availability of genomic data of S. incisa has restricted its breeding process. Here, we identified EST-SSR markers using de novo transcriptome sequencing. In this study, a transcriptome database containing 35,251 unigenes, having an average length of 985 bp, was obtained from S. incisa. From these unigene sequences, we identified 5,555 EST-SSRs, with a distribution density of one SSR per 1.60 kb. Dinucleotides (52.96%) were the most detected SSRs, followed by trinucleotides (34.64%). From the EST-SSR loci, we randomly selected 100 sites for designing primer and used the DNA of 60 samples to verify the polymorphism. The average value of the effective number of alleles (Ne), Shannon's information index (I), and expective heterozygosity (He) was 1.969, 0.728, and 0.434, respectively. The polymorphism information content (PIC) value was in the range of 0.108 to 0.669, averaging 0.406, which represented a middle polymorphism level. Cluster analysis of S. incisa were also performed based on the obtained EST-SSR data in our work. As shown by structure analysis, 60 individuals could be classified into two groups. Thus, the identification of these novel EST-SSR markers provided valuable sequence information for analyzing the population structure, genetic diversity, and genetic resource assessment of S. incisa and other related species.
Collapse
Affiliation(s)
- Cuiping Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhonglan Wu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest Tree Germplasm Resources, Jinan, 250102, Shandong, China
| | - Kuiling Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Hung TH, So T, Sreng S, Thammavong B, Boounithiphonh C, Boshier DH, MacKay JJ. Reference transcriptomes and comparative analyses of six species in the threatened rosewood genus Dalbergia. Sci Rep 2020; 10:17749. [PMID: 33082403 PMCID: PMC7576600 DOI: 10.1038/s41598-020-74814-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
Dalbergia is a pantropical genus with more than 250 species, many of which are highly threatened due to overexploitation for their rosewood timber, along with general deforestation. Many Dalbergia species have received international attention for conservation, but the lack of genomic resources for Dalbergia hinders evolutionary studies and conservation applications, which are important for adaptive management. This study produced the first reference transcriptomes for 6 Dalbergia species with different geographical origins and predicted ~ 32 to 49 K unique genes. We showed the utility of these transcriptomes by phylogenomic analyses with other Fabaceae species, estimating the divergence time of extant Dalbergia species to ~ 14.78 MYA. We detected over-representation in 13 Pfam terms including HSP, ALDH and ubiquitin families in Dalbergia. We also compared the gene families of geographically co-occurring D. cochinchinensis and D. oliveri and observed that more genes underwent positive selection and there were more diverged disease resistance proteins in the more widely distributed D. oliveri, consistent with reports that it occupies a wider ecological niche and has higher genetic diversity. We anticipate that the reference transcriptomes will facilitate future population genomics and gene-environment association studies on Dalbergia, as well as contributing to the genomic database where plants, particularly threatened ones, are currently underrepresented.
Collapse
Affiliation(s)
- Tin Hang Hung
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| | - Thea So
- Institute of Forest and Wildlife Research and Development, Phnom Penh, Cambodia
| | - Syneath Sreng
- Institute of Forest and Wildlife Research and Development, Phnom Penh, Cambodia
| | - Bansa Thammavong
- Forest Research Center, National Agriculture and Forestry Research Institute, Vientiane, Lao PDR
| | - Chaloun Boounithiphonh
- Forest Research Center, National Agriculture and Forestry Research Institute, Vientiane, Lao PDR
| | - David H Boshier
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - John J MacKay
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
9
|
Bhandari MS, Meena RK, Shamoon A, Saroj S, Kant R, Pandey S. First de novo genome specific development, characterization and validation of simple sequence repeat (SSR) markers in Genus Salvadora. Mol Biol Rep 2020; 47:6997-7008. [PMID: 32930932 DOI: 10.1007/s11033-020-05758-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022]
Abstract
Salvadoraceae constitutes ecologically imperative desert families of 3 genera-Azima, Dobera and Salvadora. Under genus Salvadora of this family, S. oleoides is a keystone species of socio-economic and medicinal value. This species naturally grows in the arid zones but currently experiencing severe fragmentation due to land use change and reduced regeneration, which may have resulted in the depletion of genetic diversity. Hence, it is up-most important to develop genomic resources for studying the population genetics in S. oleoides. This study aims to develop robust microsatellites markers, which were not yet reported in genus Salvodora due to lack of genome sequence information. We developed novel microsatellites markers in S. oleoides using Illumina paired-end sequencing technology. In total, 14,552 simple sequence repeat (SSR) markers were successfully designed from 21,055 microsatellite repeats detected in the 13 Gb raw sequence data. Afterwards, a subset of 101 SSRs were randomly selected and validated, 94 primers were successfully amplified and 34 showed polymorphisms. These SSRs were used to estimate the measures of genetic diversity in three natural populations of state Rajasthan and Gujarat. Importantly, average number of alleles (Na), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphism information content (PIC) were recorded as 2.4, 0.529, 0.357, and 0.326, respectively. Furthermore, 15 primers were evaluated in S. persica for cross-transferability, and all were successfully amplified but only eight showed polymorphisms. This study has been conducted first time for S. oleoides and pioneer among the native species of arid-zone in India.
Collapse
Affiliation(s)
- Maneesh S Bhandari
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India.
| | - Rajendra K Meena
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Arzoo Shamoon
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Shanti Saroj
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Rama Kant
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Shailesh Pandey
- Forest Pathology Discipline, Division of Forest Protection, Forest Research Institute, Dehradun, Uttarakhand, 248 006, India
| |
Collapse
|
10
|
Transcriptome Profiling Provides Insight into the Genes in Carotenoid Biosynthesis during the Mesocarp and Seed Developmental Stages of Avocado ( Persea americana). Int J Mol Sci 2019; 20:ijms20174117. [PMID: 31450745 PMCID: PMC6747375 DOI: 10.3390/ijms20174117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 11/17/2022] Open
Abstract
Avocado (Persea americana Mill.) is an economically important crop because of its high nutritional value. However, the absence of a sequenced avocado reference genome has hindered investigations of secondary metabolism. For next-generation high-throughput transcriptome sequencing, we obtained 365,615,152 and 348,623,402 clean reads as well as 109.13 and 104.10 Gb of sequencing data for avocado mesocarp and seed, respectively, during five developmental stages. High-quality reads were assembled into 100,837 unigenes with an average length of 847.40 bp (N50 = 1725 bp). Additionally, 16,903 differentially expressed genes (DEGs) were detected, 17 of which were related to carotenoid biosynthesis. The expression levels of most of these 17 DEGs were higher in the mesocarp than in the seed during five developmental stages. In this study, the avocado mesocarp and seed transcriptome were also sequenced using single-molecule long-read sequencing to acquired 25.79 and 17.67 Gb clean data, respectively. We identified 233,014 and 238,219 consensus isoforms in avocado mesocarp and seed, respectively. Furthermore, 104 and 59 isoforms were found to correspond to the putative 11 carotenoid biosynthetic-related genes in the avocado mesocarp and seed, respectively. The isoform numbers of 10 out of the putative 11 genes involved in the carotenoid biosynthetic pathway were higher in the mesocarp than those in the seed. Besides, alpha- and beta-carotene contents in the avocado mesocarp and seed during five developmental stages were also measured, and they were higher in the mesocarp than in the seed, which validated the results of transcriptome profiling. Gene expression changes and the associated variations in gene dosage could influence carotenoid biosynthesis. These results will help to further elucidate carotenoid biosynthesis in avocado.
Collapse
|
11
|
Transcriptome Sequencing of Different Avocado Ecotypes: de novo Transcriptome Assembly, Annotation, Identification and Validation of EST-SSR Markers. FORESTS 2019. [DOI: 10.3390/f10050411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Avocado (Persea americana Mill.) could be considered as an important tropical and subtropical woody oil crop with high economic and nutritional value. Despite the importance of this species, genomic information is currently unavailable for avocado and closely related congeners. In this study, we generated more than 216 million clean reads from different avocado ecotypes using Illumina HiSeq high-throughput sequencing technology. The high-quality reads were assembled into 154,310 unigenes with an average length of 922 bp. A total of 55,558 simple sequence repeat (SSR) loci detected among the 43,270 SSR-containing unigene sequences were used to develop 74,580 expressed sequence tag (EST)-SSR markers. From these markers, a subset of 100 EST-SSR markers was randomly chosen to identify polymorphic EST-SSR markers in 28 avocado accessions. Sixteen EST-SSR markers with moderate to high polymorphism levels were detected, with polymorphism information contents ranging from 0.33 to 0.84 and averaging 0.63. These 16 polymorphic EST-SSRs could clearly and effectively distinguish the 28 avocado accessions. In summary, our study is the first presentation of transcriptome data of different avocado ecotypes and comprehensive study on the development and analysis of a set of EST-SSR markers in avocado. The application of next-generation sequencing techniques for SSR development is a potentially powerful tool for genetic studies.
Collapse
|
12
|
Genetic Diversity and Population Structure Analysis of Dalbergia Odorifera Germplasm and Development of a Core Collection Using Microsatellite Markers. Genes (Basel) 2019; 10:genes10040281. [PMID: 30959931 PMCID: PMC6523640 DOI: 10.3390/genes10040281] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022] Open
Abstract
Dalbergia odorifera T. Chen (Fabaceae) is a woody tree species indigenous to Hainan Island in China. Due to its high medicinal and commercial value, this tree species has been planted over 3500 ha2 in southern China. There is an urgent need for improvement of the D. odorifera germplasm, however, limited information on germplasm collection, conservation, and assessment of genetic resources is available. Therefore, we have built a database of 251 individuals collected across the whole of southern China, which included 42 wild trees and 210 cultivated trees, with the following objectives. (1) Evaluate genetic diversity and population structure of the database using 19 microsatellite markers and (2) develop a core collection for improvement and breeding programs. Totally, the 19 microsatellite markers harbored 77 alleles across the database with the polymorphic information content (PIC) ranging from 0.03 to 0.66. Medium genetic diversity level was inferred by Nei’s gene diversity (0.38), Shannon’s information index (0.65), and observed (0.33) and expected heterozygosity (0.38). Structure analysis showed that four was the optimum cluster size using the model-based Bayesian procedure, and the 251 D. odorifera individuals were grouped into five populations including four pure ones (RP1-4) and one mixed one (MIX) based on their maximum membership coefficients. Among these populations, the expected heterozygosity varied from 0.30 (RP3) to 0.38 (RP4). Analysis of molecular variance (AMOVA) showed 11% genetic variation existed among populations, and moderate population differentiation was inferred by the matrix of pairwise Fst (genetic differentiation among populations), which was in the range of 0.031 to 0.095. Moreover, a core collection of 31 D. odorifera individuals including six wild and 25 cultivated trees was developed, which was only 12.4% of the database but conserved the whole genetic diversity. The results of this study provided additional insight into the genetic structure of the large D. odorifera germplasm, and the core collection will be useful for the efficient and sustainable utilization of genetic resources, as well as efficient improvement in breeding programs.
Collapse
|
13
|
Genetic Diversity of the Endangered Dalbergia odorifera Revealed by SSR Markers. FORESTS 2019. [DOI: 10.3390/f10030225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dalbergia odorifera T. Chen (Fabaceae) is a semi-deciduous tree species indigenous to Hainan Island in China. Due to its precious heartwood “Hualimu (Chinese)” and Chinese medicinal components “Jiangxiang”, D. odorifera is seriously threatened of long-term overexploitation and has been listed on the IUCN (International Union for Conservation of Nature’s) red list since 1998. Therefore, the elucidation of its genetic diversity is imperative for conservation and breeding purposes. In this study, we evaluated the genetic diversity of 42 wild D. odorifera trees from seven populations covering its whole native distribution. In total, 19 SSR (simple sequence repeat) markers harbored 54 alleles across the 42 samples, and the medium genetic diversity level was inferred by Nei’s gene diversity (0.36), observed (0.28) and expected heterozygosity (0.37). Among the seven wild populations, the expected heterozygosity (He) varied from 0.31 (HNQS) to 0.40 (HNCJ). The analysis of molecular variance (AMOVA) showed that only 3% genetic variation existed among populations. Moderate population differentiations among the investigated populations were indicated by pairwise Fst (0.042–0.115). Structure analysis suggested two clusters for the 42 samples. Moreover, the seven populations were clearly distinguished into two clusters from both the principal coordinate analysis (PCoA) and neighbor-joining (NJ) analysis. Populations from Haikou city (HNHK), Baisha autonomous county (HNBS), Ledong autonomous county (HNLD), and Dongfang city (HNDF) comprised cluster I, while cluster II comprised the populations from Wenchang city and Sansha city (HNQS), Changjiang autonomous county (HNCJ), and Wuzhisan city (HNWZS). The findings of this study provide a preliminary genetic basis for the conservation, management, and restoration of this endemic species.
Collapse
|