1
|
Bartolić P, Morgan EJ, Padilla-García N, Kolář F. Ploidy as a leaky reproductive barrier: mechanisms, rates and evolutionary significance of interploidy gene flow. ANNALS OF BOTANY 2024; 134:537-550. [PMID: 38868992 PMCID: PMC11523636 DOI: 10.1093/aob/mcae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Whole-genome duplication (polyploidization) is a dominant force in sympatric speciation, particularly in plants. Genome doubling instantly poses a barrier to gene flow owing to the strong crossing incompatibilities between individuals differing in ploidy. The strength of the barrier, however, varies from species to species and recent genetic investigations revealed cases of rampant interploidy introgression in multiple ploidy-variable species. SCOPE Here, we review novel insights into the frequency of interploidy gene flow in natural systems and summarize the underlying mechanisms promoting interploidy gene flow. Field surveys, occasionally complemented by crossing experiments, suggest frequent opportunities for interploidy gene flow, particularly in the direction from diploid to tetraploid, and between (higher) polyploids. However, a scarcity of accompanying population genetic evidence and a virtual lack of integration of these approaches leave the underlying mechanisms and levels of realized interploidy gene flow in nature largely unknown. Finally, we discuss potential consequences of interploidy genome permeability on polyploid speciation and adaptation and highlight novel avenues that have just recently been opened by the very first genomic studies of ploidy-variable species. Standing in stark contrast with rapidly accumulating evidence for evolutionary importance of homoploid introgression, similar cases in ploidy-variable systems are yet to be documented. CONCLUSIONS The genomics era provides novel opportunity to re-evaluate the role of interploidy introgression in speciation and adaptation. To achieve this goal, interdisciplinary studies bordering ecology and population genetics and genomics are needed.
Collapse
Affiliation(s)
- Paolo Bartolić
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Emma J Morgan
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Nélida Padilla-García
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, 37007 Salamanca, Spain
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| |
Collapse
|
2
|
Gómez Quijano MJ, Gross BL, Etterson JR. Genetic differentiation across a steep and narrow environmental gradient: Quantitative genetic and genomic insights into Lake Superior populations of Quercus rubra. Mol Ecol 2024; 33:e17483. [PMID: 39056407 DOI: 10.1111/mec.17483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Adaptive differentiation of traits and underlying loci can occur at a small geographical scale if natural selection is stronger than countervailing gene flow and drift. We investigated this hypothesis using coupled quantitative genetic and genomic approaches for a wind-pollinated tree species, Quercus rubra, along the steep, narrow gradient of the Lake Superior coast that encompasses four USDA Hardiness Zones within 100 km. For the quantitative genetic component of this study, we examined phenotypic differentiation among eight populations in a common garden, measuring seed mass, germination, height, stem diameter, leaf number, specific leaf area and survival. For the genomic component, we quantified genetic differentiation for 26 populations from the same region using RAD-seq. Because hybridisation with Quercus ellipsoidalis occurs in other parts of the species' range, we included two populations of this congener for comparison. In the common garden study, we found a strong signal of population differentiation that was significantly associated with at least one climate factor for nine of 10 measured traits. In contrast, we found no evidence of genomic differentiation among populations based on FST or any other measures. However, both distance-based and genotype-environment association analyses identified loci showing the signature of selection, with one locus in common across five analyses. This locus was associated with the minimum temperature of the coldest month, a factor that defines the climate zones and was also significant in the common garden analyses. In addition, we documented introgression from Q. ellipsoidalis into Q. rubra, with rates of introgression correlated with the climate gradient. In sum, this study reveals signatures of selection at the quantitative trait and genomic level consistent with climate adaptation, a pattern that is more often documented at a much broader geographical scale, especially in long-lived wind-pollinated species.
Collapse
Affiliation(s)
- María José Gómez Quijano
- Department of Biology, Queen's University, Kingston, Ontario, Canada
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Briana L Gross
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Julie R Etterson
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| |
Collapse
|
3
|
Molecular Research on Stress Responses in Quercus spp.: From Classical Biochemistry to Systems Biology through Omics Analysis. FORESTS 2021. [DOI: 10.3390/f12030364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Quercus (oak), family Fagaceae, comprises around 500 species, being one of the most important and dominant woody angiosperms in the Northern Hemisphere. Nowadays, it is threatened by environmental cues, which are either of biotic or abiotic origin. This causes tree decline, dieback, and deforestation, which can worsen in a climate change scenario. In the 21st century, biotechnology should take a pivotal role in facing this problem and proposing sustainable management and conservation strategies for forests. As a non-domesticated, long-lived species, the only plausible approach for tree breeding is exploiting the natural diversity present in this species and the selection of elite, more resilient genotypes, based on molecular markers. In this direction, it is important to investigate the molecular mechanisms of the tolerance or resistance to stresses, and the identification of genes, gene products, and metabolites related to this phenotype. This research is being performed by using classical biochemistry or the most recent omics (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) approaches, which should be integrated with other physiological and morphological techniques in the Systems Biology direction. This review is focused on the current state-of-the-art of such approaches for describing and integrating the latest knowledge on biotic and abiotic stress responses in Quercus spp., with special reference to Quercus ilex, the system on which the authors have been working for the last 15 years. While biotic stress factors mainly include fungi and insects such as Phytophthora cinnamomi, Cerambyx welensii, and Operophtera brumata, abiotic stress factors include salinity, drought, waterlogging, soil pollutants, cold, heat, carbon dioxide, ozone, and ultraviolet radiation. The review is structured following the Central Dogma of Molecular Biology and the omic cascade, from DNA (genomics, epigenomics, and DNA-based markers) to metabolites (metabolomics), through mRNA (transcriptomics) and proteins (proteomics). An integrated view of the different approaches, challenges, and future directions is critically discussed.
Collapse
|
4
|
Estravis-Barcala M, Mattera MG, Soliani C, Bellora N, Opgenoorth L, Heer K, Arana MV. Molecular bases of responses to abiotic stress in trees. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3765-3779. [PMID: 31768543 PMCID: PMC7316969 DOI: 10.1093/jxb/erz532] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/25/2019] [Indexed: 05/05/2023]
Abstract
Trees are constantly exposed to climate fluctuations, which vary with both time and geographic location. Environmental changes that are outside of the physiological favorable range usually negatively affect plant performance and trigger responses to abiotic stress. Long-living trees in particular have evolved a wide spectrum of molecular mechanisms to coordinate growth and development under stressful conditions, thus minimizing fitness costs. The ongoing development of techniques directed at quantifying abiotic stress has significantly increased our knowledge of physiological responses in woody plants. However, it is only within recent years that advances in next-generation sequencing and biochemical approaches have enabled us to begin to understand the complexity of the molecular systems that underlie these responses. Here, we review recent progress in our understanding of the molecular bases of drought and temperature stresses in trees, with a focus on functional, transcriptomic, epigenetic, and population genomic studies. In addition, we highlight topics that will contribute to progress in our understanding of the plastic and adaptive responses of woody plants to drought and temperature in a context of global climate change.
Collapse
Affiliation(s)
- Maximiliano Estravis-Barcala
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, (Consejo Nacional de Investigaciones Científicas y Técnicas- Universidad Nacional del Comahue), San Carlos de Bariloche, Rio Negro, Argentina
| | - María Gabriela Mattera
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
| | - Carolina Soliani
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
| | - Nicolás Bellora
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, (Consejo Nacional de Investigaciones Científicas y Técnicas- Universidad Nacional del Comahue), San Carlos de Bariloche, Rio Negro, Argentina
| | - Lars Opgenoorth
- Department of Ecology, Philipps University Marburg, Marburg, Germany
- Swiss Federal Research Institute WSL, BirmensdorfSwitzerland
| | - Katrin Heer
- Department of Conservation Biology, Philipps University Marburg, Marburg Germany
| | - María Verónica Arana
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
- Correspondence:
| |
Collapse
|
5
|
Müller M, Gailing O. Abiotic genetic adaptation in the Fagaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:783-795. [PMID: 31081234 DOI: 10.1111/plb.13008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Fagaceae can be found in tropical and temperate regions and contain species of major ecological and economic importance. In times of global climate change, tree populations need to adapt to rapidly changing environmental conditions. The predicted warmer and drier conditions will potentially result in locally maladapted populations. There is evidence that major genera of the Fagaceae are already negatively affected by climate change-related factors such as drought and associated biotic stressors. Therefore, knowledge of the mechanisms underlying adaptation is of great interest. In this review, we summarise current literature related to genetic adaptation to abiotic environmental conditions. We begin with an overview of genetic diversity in Fagaceae species and then summarise current knowledge related to drought stress tolerance, bud burst timing and frost tolerance in the Fagaceae. Finally, we discuss the role of hybridisation, epigenetics and phenotypic plasticity in adaptation.
Collapse
Affiliation(s)
- M Müller
- Faculty for Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding, University of Goettingen, Göttingen, Germany
| | - O Gailing
- Faculty for Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| |
Collapse
|
6
|
Abstract
Introgression is emerging as an important source of novel genetic variation, alongside standing variation and mutation. It is adaptive when such introgressed alleles are maintained by natural selection. Recently, there has been an explosion in the number of studies on adaptive introgression. In this review, we take a plant perspective centred on four lines of evidence: (i) introgression, (ii) selection, (iii) phenotype and (iv) fitness. While advances in genomics have contributed to our understanding of introgression and porous species boundaries (task 1), and the detection of signatures of selection in introgression (task 2), the investigation of adaptive introgression critically requires links to phenotypic variation and fitness (tasks 3 and 4). We also discuss the conservation implications of adaptive introgression in the face of climate change. Adaptive introgression is particularly important in rapidly changing environments, when standing genetic variation and mutation alone may only offer limited potential for adaptation. We conclude that clarifying the magnitude and fitness effects of introgression with improved statistical techniques, coupled with phenotypic evidence, has great potential for conservation and management efforts.
Collapse
Affiliation(s)
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|