1
|
Chaib I, Dakhmouche-Djekrif S, Nouadri T. Optimization and kinetics study of α-amylase production by the newly isolated thermophilic yeast strain Geotrichum candidum PO27 using olive pomace waste under solid-state fermentation. Braz J Microbiol 2025:10.1007/s42770-025-01691-0. [PMID: 40394343 DOI: 10.1007/s42770-025-01691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025] Open
Abstract
Several biotechnological and industrial applications are based on the use of various microbial enzymes. Today, amylases are one of the most demanded enzymes due to their high productivity yield and thermostability. The potential use of Geotrichum candidum PO27 for the production of α-amylase was investigated for its ability to utilize olive pomace (OP) waste as a carbon source. Plackett and Burman Design (PBD) and Response Surface Methodology (RSM) using Central Composite Design (CCD) approaches were used to obtain optimal conditions for enzyme production. Cultivation parameters, including pH, inoculum, various carbon and nitrogen sources, and other supplements, were screened by solid-state fermentation (SSF) at 60 °C. Under optimal conditions (moisture content 24.77%, malt extract 1.84 g%, and CaCl2 1.84 g%), the maximum production reached 412.94 U/g, which was in agreement with the statistical model prediction (421.32 U/g). The model showed a 2.27-fold increase in α-amylase production compared with the initial medium (181.61 U/g). Peak α-amylase production was achieved after 40 h of incubation at pH 5.53, and sugar concentrations ranged from 10.87 mg/ mL to 5.537 within the first 6 h of culture. Due to the low substrate cost and short incubation time of the strain, Geotrichum candidum PO27 α-amylase may be of significant commercial value to industries requiring enzymatic hydrolysis of starch.
Collapse
Affiliation(s)
- Ibtissem Chaib
- Laboratory of Microbiological Engineering and Applications, Department of Biochemistry and Molecular and Cellular Biology, Faculty of Natural and Life Sciences, University of Constantine 1, Frères Mentouri, 25000, Constantine, Algeria.
| | - Scheherazed Dakhmouche-Djekrif
- Laboratory of Microbiological Engineering and Applications, Department of Biochemistry and Molecular and Cellular Biology, Faculty of Natural and Life Sciences, University of Constantine 1, Frères Mentouri, 25000, Constantine, Algeria
- Department of Natural Sciences, Teachers Training School El Katiba Assia Djebar, University Town Ali Mendjeli, 25000, Constantine, Algeria
| | - Tahar Nouadri
- Laboratory of Microbiological Engineering and Applications, Department of Biochemistry and Molecular and Cellular Biology, Faculty of Natural and Life Sciences, University of Constantine 1, Frères Mentouri, 25000, Constantine, Algeria
| |
Collapse
|
2
|
Thongsongkaew C, Cherisilp B, Billateh A, Maneechote W, Srinuanpan S. Sequential Bioprocesses for Biovalorization of Shrimp Pond Sludge by Hydrolytic Enzymes-Producing Bacterial Consortia and Photosynthetic Bacteria. J Microbiol Biotechnol 2025; 35:e2501042. [PMID: 40374528 PMCID: PMC12099616 DOI: 10.4014/jmb.2501.01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 05/17/2025]
Abstract
This study aimed to valorize shrimp pond sludge through sequential bioprocesses using hydrolytic enzyme cocktails produced by bacterial consortia, and photosynthetic bacteria. The production of enzyme cocktails by a co-culture of protease-, amylase-, and lipase-producing bacteria (PAL) was performed in a 5-L stirred tank bioreactor using a low-cost medium. The crude enzyme cocktails were concentrated and used to treat shrimp pond sludge. The addition of enzyme cocktails at 2.0 U/ml based on protease activity led to a reduction of total suspended solids by 40.1% and an increase in soluble chemical oxygen demand (COD) by 3 folds. The solubilized nutrients from shrimp pond sludge in liquid fraction were used as a sole nutrient source to cultivate a newly isolated photosynthetic bacteria (PSB) identified as Rhodocista pekingensis. This PSB was able to grow and achieve a high biomass of 1.30 ± 0.28 g/l and produce value-added bioproducts including aminolevulinic acid (11.77 ± 0.55 μM), carotenoids (166.84 ± 0.03 mg/g dry cell weight), and bacteriochlorophylls (771.47 ± 0.17 mg/g dry cell weight). These results highlight the potential use of enzyme cocktails produced by the co-culture of hydrolytic bacteria to facilitate the biovalorization of aquaculture sludge by PSB and may also greatly contribute to biovalorization of other similar aquaculture wastes into valuable bioproducts.
Collapse
Affiliation(s)
- Chutema Thongsongkaew
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Benjamas Cherisilp
- Center of Excellence of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Muang Chiang Mai, Chiang Mai 50200, Thailand
| | - Asma Billateh
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wageeporn Maneechote
- Center of Excellence of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Muang Chiang Mai, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Muang Chiang Mai, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Adetiloye OA, Solomon BO, Omolaiye JA, Betiku E. Optimization of thermostable amylolytic enzyme production from Bacillus cereus isolated from a recreational warm spring via Box Behnken design and response surface methodology. Microb Cell Fact 2025; 24:87. [PMID: 40253347 PMCID: PMC12008982 DOI: 10.1186/s12934-025-02709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025] Open
Abstract
This study aimed to find a source for local amylase-producing microbes. Sixteen isolates were obtained from the water samples from the warm spring and characterized based on morphological and biochemical tests. The 16S rRNA molecular identification technique confirmed the most potent isolate as Bacillus cereus. The thermophilic property of the bacterium demonstrated that it could withstand temperatures of up to 80 °C. One-factor-at-a-time (OFAT) and Box Behnken Design (BBD) coupled with response surface methodology (RSM) optimization techniques were used to improve amylase production. OFAT established optimal physical parameter conditions as the starch concentration of 5% w/v, inoculum volume of 2% v/v, pH of 8, incubation temperature of 45 °C, and 48 h of incubation, leading to amylase activity of 172.6 U/mL by the isolated B. cereus. A quadratic mathematical model with a coefficient of determination (R2) of 0.9957 was established for the amylase production process. Enhanced amylase activity of 196.02 U/mL was achieved with BBD-RSM under optimal growth conditions of pH of 7, incubation time of 48 h, substrate concentration of 5% w/v of starch, and at 45 °C, a 1.2-fold increase compared to the OFAT method. The B. cereus strain isolated from the warm spring was a mildly thermophilic bacterium with the potential for synthesizing amylolytic enzymes with characteristics beneficial for commercial utilization.
Collapse
Affiliation(s)
- Oluwaseun Abosede Adetiloye
- Department of Food and Industrial Biotechnology, National Biotechnology Research and Development Agency, Abuja, Nigeria
| | - Bamidele Ogbe Solomon
- Biochemical Engineering Laboratory, Department of Chemical Engineering, Obafemi Awolowo University, Ile-Ife, 220005, Osun State, Nigeria
| | - Japhael Abel Omolaiye
- Biomedicinal Research Centre, Forestry Research Institute of Nigeria, P.M.B 5054, Ibadan, Nigeria
| | - Eriola Betiku
- Department of Biological Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
4
|
Mabrouk SB, Hmida BBH, Sebii H, Fendri A, Sayari A. Production of an amylase from newly Bacillus strain: Optimization by response-surface methodology, characterization and application with a fungal lipase in bread making. Int J Biol Macromol 2024; 285:138147. [PMID: 39613080 DOI: 10.1016/j.ijbiomac.2024.138147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Using the statistical approaches, the optimization of amylase production by a newly Bacillus strain was achieved. Keeping the insignificant factor at lower levels and following the optimized condition (inoculum size 0.3; 19 h of incubation; 18 g L-1 of starch; 4 g L-1 of MgSO4; and 15 g L-1 NaCl) the amylase activity has reached 18.48 ± 0.42 U mL-1 with an improvement factor of 6.48-fold-times. The properties of the crude amylase, tentatively named AmySBM, were examined, revealing an optimal activity at 60 °C and pH 7. The enzyme demonstrated good stability across a wide temperature range (40-60 °C) and pH levels (6-7). Its activity depended on the presence of Ca2+. Additionally, it was discovered that maltose was the sole product of starch hydrolysis by AmySBM, an encouraging result for introducing it into bread making. Tests on dough properties with varied amylase amounts revealed that 0.06 U g-1 was ideal, with white flour producing the greatest results. Incorporating Rhizopus oryzae lipase at 1.2 U g-1 dramatically increased bread quality. Finally, combining an enzymatic cocktail of AmySBM and lipase at optimal quantities improved the qualities of white bread, demonstrating its potential as an anti-staling agent to replace conventional improvers in the baking industry.
Collapse
Affiliation(s)
- Sameh Ben Mabrouk
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, 3038 Sfax, Tunisia.
| | - Bouthaina Ben Hadj Hmida
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, 3038 Sfax, Tunisia
| | - Haifa Sebii
- Food Analysis, Valorization and Safety Laboratory, Engineering National School of Sfax (ENIS), University of Sfax, 3038 Sfax, Tunisia
| | - Ahmed Fendri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, 3038 Sfax, Tunisia
| | - Adel Sayari
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, 3038 Sfax, Tunisia; Department of Biological Sciences, College of Science, University of Jeddah, 23890 Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Ashok PP, Dasgupta D, Ray A, Suman SK. Challenges and prospects of microbial α-amylases for industrial application: a review. World J Microbiol Biotechnol 2023; 40:44. [PMID: 38114825 DOI: 10.1007/s11274-023-03821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
α-Amylases are essential biocatalysts representing a billion-dollar market with significant long-term global demand. They have varied applications ranging from detergent, textile, and food sectors such as bakery to, more recently, biofuel industries. Microbial α-amylases have distinct advantages over their plant and animal counterparts owing to generally good activities and better stability at temperature and pH extremes. With the scope of applications expanding, the need for new and improved α-amylases is ever-growing. However, scaling up microbial α-amylase technology from the laboratory to industry for practical applications is impeded by several issues, ranging from mass transfer limitations, low enzyme yields, and energy-intensive product recovery that adds to high production costs. This review highlights the major challenges and prospects for the production of microbial α-amylases, considering the various avenues of industrial bioprocessing such as culture-independent approaches, nutrient optimization, bioreactor operations with design improvements, and product down-streaming approaches towards developing efficient α-amylases with high activity and recyclability. Since the sequence and structure of the enzyme play a crucial role in modulating its functional properties, we have also tried to analyze the structural composition of microbial α-amylase as a guide to its thermodynamic properties to identify the areas that can be targeted for enhancing the catalytic activity and thermostability of the enzyme through varied immobilization or selective enzyme engineering approaches. Also, the utilization of inexpensive and renewable substrates for enzyme production to isolate α-amylases with non-conventional applications has been briefly discussed.
Collapse
Affiliation(s)
- Patel Pratima Ashok
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Diptarka Dasgupta
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Anjan Ray
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil K Suman
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Abo-Kamer AM, Abd-El-Salam IS, Mostafa FA, Mustafa AERA, Al-Madboly LA. A promising microbial α-amylase production, and purification from Bacillus cereus and its assessment as antibiofilm agent against Pseudomonas aeruginosa pathogen. Microb Cell Fact 2023; 22:141. [PMID: 37528448 PMCID: PMC10391895 DOI: 10.1186/s12934-023-02139-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/01/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND AND AIM The purpose of the current study is to isolate a heavily amylase-producing bacteria of the genus Bacillus from soil samples, optimize the production of the enzyme, purify it, and evaluate its activity against biofilm-producing bacteria. A total of 12 soil samples were collected and screened for promising Bacillus species with good amylolytic activity. Isolation was done by serial dilution and plating technique and amylolytic activity was determined by starch agar plate method. Among the 12 Bacillus isolates recovered from soil samples, 7 showed positive α-amylase production. The best isolate that recorded the greatest amylolytic activity was selected for further studies. This isolate was identified by 16S rRNA sequencing as Bacillus cereus and registered under gene bank accession number OP811897. Furthermore, the α-amylase enzyme was produced by a submerged fermentation technique using best production media and partially purified by ammonium sulfate and chilled ethanol and molecular weight had been determined by SDS-PAGE gel electrophoresis. The production of α-amylase was optimized experimentally by one-factor at a time protocol and statistically by Plackett-Burman design as well as RSM CCD design. Data obtained from OFAT and CCD revealed that α-amylase activities were 1.5- and twofold respectively higher as compared to un-optimized conditions. The most significant factors had been identified and optimized by CCD design. RESULTS Among the eleven independent variables tested by PBD, glucose, peptone, (NH4)2SO4, and Mg SO4 were the most significant parameters for α-amylase production with an actual yield of 250U/ml. The best physical parameters affecting the enzyme production were incubation time at 35 °C, and pH 5.5 for 48 h. The partially purified enzyme with 60% ammonium sulphate saturation with 1.38- fold purification showed good stability characteristics at a storage temperature of 4 °C and pH up to 8.5 for 21 days. Antibiofilm activity of purified α-amylase was determined against Pseudomonas aeruginosa (ATCC 35659) by spectrophotometric analysis and CLSM microscopic analysis. Results demonstrated biofilm inhibition by 84% of the formed Pseudomonas biofilm using a microtiter plate assay and thickness inhibition activity by 83% with live/Dead cells percentage of 17%/83% using CLSM protocol. CONCLUSIONS A highly stable purified α-amylase from B. cereus showed promising antibiofilm activity against one of the clinically important biofilm-forming MDR organisms that could be used as a cost-effective tool in pharmaceutical industries.
Collapse
Affiliation(s)
- Amal M Abo-Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ibrahim S Abd-El-Salam
- Departemet of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, Egypt
| | - Faten A Mostafa
- Departemet of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, Egypt
| | - Abd-El-Rahman A Mustafa
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
7
|
Rathod BG, Pandala S, Poosarla VG. A Novel Halo-Acid-Alkali-Tolerant and Surfactant Stable Amylase Secreted from Halophile Bacillus siamensis F2 and Its Application in Waste Valorization by Bioethanol Production and Food Industry. Appl Biochem Biotechnol 2023; 195:4775-4795. [PMID: 37171761 DOI: 10.1007/s12010-023-04559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
The extracellular amylase production level by the moderate halophile Bacillus siamensis F2 was optimized, and the enzyme was biochemically characterized. The culture parameters for NaCl, carbon, nitrogen, pH, and temperature were optimized for high titers of amylase production. Growing B. siamensis F2 cultures in Great Salt Lake-2 medium with additions of (in g/L) NaCl (100), starch (30), yeast extract (2), KNO3 (2), and MgSO4 (1) at pH 8, 30 °C resulted in the maximum amylase production (4.2 U/ml). The amylase was active across a wide range of salinities (0 to 30% NaCl), pH (5.0-10.0), and temperatures (20-70 °C) and showed good stability with surfactants (sodium dodecyl sulfate (SDS) and Triton X-100); hence, it was identified as halo-acid-alkali-tolerant and surfactant stable. Temperature, pH, and salinity were optimal for amylase activity at 50 °C, pH 7, and 5% NaCl, respectively. It also generates amylase by utilizing agricultural wastes like sugarcane bagasse, sweet potato peel, and rice husk. Based on the performance of B. siamensis F2 using agricultural wastes and synthesizing amylase, the current study attempted to produce bioethanol by coculturing with baker's yeast using sugarcane bagasse and sweet potato peel as a substrate, which yielded 47 and 57 g/L of bioethanol, respectively. Besides bioethanol production, amylase secreted by F2 was also employed for juice clarification for better yield and clarity and for softening dough to produce better-quality buns. This novel amylase may have many potential applications in waste valorization, biorefinery sectors, and food industries.
Collapse
Affiliation(s)
- Baliram Gurunath Rathod
- Department of Microbiology and FST (Food Science & Technology), GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Srinija Pandala
- Department of Microbiology and FST (Food Science & Technology), GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Venkata Giridhar Poosarla
- Department of Microbiology and FST (Food Science & Technology), GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
8
|
Ndubuisi IA, Amadi CO, Nwagu TN, Murata Y, Ogbonna JC. Non-conventional yeast strains: Unexploited resources for effective commercialization of second generation bioethanol. Biotechnol Adv 2023; 63:108100. [PMID: 36669745 DOI: 10.1016/j.biotechadv.2023.108100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The conventional yeast (Saccharomyces cerevisiae) is the most studied yeast and has been used in many important industrial productions, especially in bioethanol production from first generation feedstock (sugar and starchy biomass). However, for reduced cost and to avoid competition with food, second generation bioethanol, which is produced from lignocellulosic feedstock, is now being investigated. Production of second generation bioethanol involves pre-treatment and hydrolysis of lignocellulosic biomass to sugar monomers containing, amongst others, d-glucose and D-xylose. Intrinsically, S. cerevisiae strains lack the ability to ferment pentose sugars and genetic engineering of S. cerevisiae to inculcate the ability to ferment pentose sugars is ongoing to develop recombinant strains with the required stability and robustness for commercial second generation bioethanol production. Furthermore, pre-treatment of these lignocellulosic wastes leads to the release of inhibitory compounds which adversely affect the growth and fermentation by S. cerevisae. S. cerevisiae also lacks the ability to grow at high temperatures which favour Simultaneous Saccharification and Fermentation of substrates to bioethanol. There is, therefore, a need for robust yeast species which can co-ferment hexose and pentose sugars and can tolerate high temperatures and the inhibitory substances produced during pre-treatment and hydrolysis of lignocellulosic materials. Non-conventional yeast strains are potential solutions to these problems due to their abilities to ferment both hexose and pentose sugars, and tolerate high temperature and stress conditions encountered during ethanol production from lignocellulosic hydrolysate. This review highlights the limitations of the conventional yeast species and the potentials of non-conventional yeast strains in commercialization of second generation bioethanol.
Collapse
Affiliation(s)
| | - Chioma O Amadi
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Tochukwu N Nwagu
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Y Murata
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - James C Ogbonna
- Department of Microbiology, University of Nigeria Nsukka, Nigeria.
| |
Collapse
|
9
|
Aarti C, Khusro A, Agastian P. Saccharification of alkali pre-treated aquatic weeds biomass using partially purified cellulase immobilized on different matrices. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Production and Partial Characterization of α-Amylase Enzyme from Marine Actinomycetes. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5289848. [PMID: 34917683 PMCID: PMC8670945 DOI: 10.1155/2021/5289848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 01/05/2023]
Abstract
Amylase producing actinobacteria were isolated and characterized from terrestrial environment. There are a limited number of reports investigating the marine environment; hence, in the present study, four marine enzymes were tested for their amylase production ability. On starch agar plates, the Streptomyces rochei strain showed a higher hydrolytic zone (24 mm) than the other isolates. Growth under optimized culture conditions using Plackett-Burman's experimental design led to a 1.7, 9.8, 7.7, and 3.12-fold increase for the isolates S. griseorubens, S. rochei, S. parvus, and Streptomyces sp., respectively, in the specific activity measurement. When applying the Box-Behnken design on S. rochei using the most significant parameters (starch, K2HPO4, pH, and temperature), there was a 12.22-fold increase in the specific activity measurement 7.37 U/mg. The α-amylase was partially purified, and its molecular weight was determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. α-Amylase was particularly active at pH 6 and 65°C. The purified enzyme was most active at 65°C and pH 6, thermal stability of 70°C for 40 min, and salt concentration of 1 M with Km and Vmax of 6.58 mg/ml and 21.93 μmol/ml/min, respectively. The α-amylase was improved by adding Cu+2, Zn+2, and Fe+2 (152.21%, 207.24%, and 111.89%). Increased production of α-amylase enzyme by S. rochei KR108310 leads to production of significant industrial products.
Collapse
|
11
|
Bacillus velezensis Identification and Recombinant Expression, Purification, and Characterization of Its Alpha-Amylase. FERMENTATION 2021. [DOI: 10.3390/fermentation7040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amylases account for about 30% of the global market of industrial enzymes, and the current amylases cannot fully meet industrial needs. This study aimed to identify a high α-amylase producing bacterium WangLB, to clone its α-amylase coding gene, and to characterize the α-amylase. Results showed that WangLB belonged to Bacillus velezensis whose α-amylase gene was 1980 bp coding 659 amino acids designated as BvAmylase. BvAmylase was a hydrophilic stable protein with a signal peptide and a theoretical pI of 5.49. The relative molecular weight of BvAmylase was 72.35 kDa, and was verified by SDS-PAGE. Its modeled structure displayed that it was a monomer composed of three domains. Its optimum temperature and pH were 70 °C and pH 6.0, respectively. It also showed high activity in a wide range of temperatures (40–75 °C) and a relatively narrow pH (5.0–7.0). It was a Ca2+-independent enzyme, whose α-amylase activity was increased by Co2+, Tween 20, and Triton X-100, and severely decreased by SDS. The Km and the Vmax of BvAmylase were 3.43 ± 0.53 and 434.19 ± 28.57 U/mg. In conclusion, the α-amylase producing bacterium WangLB was identified, and one of its α-amylases was characterized, which will be a candidate enzyme for industrial applications.
Collapse
|
12
|
Kherouf M, Habbeche A, Benamia F, Saoudi B, Kerouaz B, Ladjama A. Statistical optimization of a novel extracellular alkaline and thermostable amylase production from thermophilic Actinomadura keratinilytica sp. Cpt29 and its potential application in detergent industry. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Bandal JN, Tile VA, Sayyed RZ, Jadhav HP, Azelee NIW, Danish S, Datta R. Statistical Based Bioprocess Design for Improved Production of Amylase from Halophilic Bacillus sp. H7 Isolated from Marine Water. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102833. [PMID: 34064563 PMCID: PMC8150710 DOI: 10.3390/molecules26102833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
Amylase (EC 3.2.1.1) enzyme has gained tremendous demand in various industries, including wastewater treatment, bioremediation and nano-biotechnology. This compels the availability of enzyme in greater yields that can be achieved by employing potential amylase-producing cultures and statistical optimization. The use of Plackett-Burman design (PBD) that evaluates various medium components and having two-level factorial designs help to determine the factor and its level to increase the yield of product. In the present work, we are reporting the screening of amylase-producing marine bacterial strain identified as Bacillus sp. H7 by 16S rRNA. The use of two-stage statistical optimization, i.e., PBD and response surface methodology (RSM), using central composite design (CCD) further improved the production of amylase. A 1.31-fold increase in amylase production was evident using a 5.0 L laboratory-scale bioreactor. Statistical optimization gives the exact idea of variables that influence the production of enzymes, and hence, the statistical approach offers the best way to optimize the bioprocess. The high catalytic efficiency (kcat/Km) of amylase from Bacillus sp. H7 on soluble starch was estimated to be 13.73 mL/s/mg.
Collapse
Affiliation(s)
- J. N. Bandal
- Department of Microbiology, K.R.T. Arts, B.H. Commerce, and A.M. Science College, Nashik 422002, Maharashtra, India;
- Correspondence: (J.N.B.); (R.Z.S.); (R.D.)
| | - V. A. Tile
- Department of Microbiology, K.R.T. Arts, B.H. Commerce, and A.M. Science College, Nashik 422002, Maharashtra, India;
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s, Arts, Science & Commerce College, Shahada 425409, Maharashtra, India;
- Correspondence: (J.N.B.); (R.Z.S.); (R.D.)
| | - H. P. Jadhav
- Department of Microbiology, PSGVP Mandal’s, Arts, Science & Commerce College, Shahada 425409, Maharashtra, India;
| | - N. I. Wan Azelee
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Subhan Danish
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China;
| | - Rahul Datta
- Department of Geology and Pedology, Mendel University in Brno, 613 00 Brno-sever-Černá Pole, Czech Republic
- Correspondence: (J.N.B.); (R.Z.S.); (R.D.)
| |
Collapse
|
14
|
Screening and Characterization of Thermostable Amylase-Producing Bacteria Isolated from Soil Samples of Afdera, Afar Region, and Molecular Detection of Amylase-Coding Gene. Int J Microbiol 2021; 2021:5592885. [PMID: 34046067 PMCID: PMC8128607 DOI: 10.1155/2021/5592885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/28/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Studying thermostable amylase-producing bacteria in extreme environments has a crucial role to overcome different industrial challenges. Afar Region is one of the hottest and salty areas, making it the home of extremophiles. This study aimed at screening and characterizing amylase-producing bacteria isolated from soil samples of Afdera, Afar Region, and detection of their amylase-coding genes. Thus, a total of 49 bacterial isolates were obtained from the collected soil samples. Out of these, three isolates (M2, M8, and M13) were selected on the basis of diameter of the average clear zone formation and time taken to decolorize iodine solution. Based on their morphological and biochemical characteristics, the isolates were identified as genus Bacillus. PCR amplification and detection of the amylase-coding gene confirmed the presence of the amylase gene in the three bacterial isolates. Optimum amylase production time for these isolates was 48 hrs (M13 and M8) and 72 hrs (M2) corresponding to the amylase activity of 0.67 U/mL for M13, 0.74 U/mL for M8, and 0.73 U/mL for M2 with an optimum temperature of 55°C. Studies on the effect of temperature revealed that the crude enzyme had a maximum activity and stability at 75°C, 70°C, and 65°C for isolates M13, M8, and M2, respectively. Additionally, amylase produced from all isolates retained more than 66.41% of their original activity after incubating them at a temperature range from 55 to 80°C for 50 min. Optimum pH for the activity of all crude amylases was in the range from 5 to 9 with a peak activity at pH 8. Their activity decreased significantly by the presence of Zn+2 and Mg2+; however, their activity increased by the presence of Ca+2. Moreover, the three crude amylases were stable (0–3 M) with NaCl concentration. Amylases of this finding with thermophilic and halophilic characteristics offer a wide range of applications in food, brewing, textile, starch, paper, and deterrent industries. Thus, identification of these Bacillus isolates at a molecular level and purification as well as detailed characterization of the types of amylases are recommended for effective utilization in different industries.
Collapse
|
15
|
Molecular diversity and hydrolytic enzymes production abilities of soil bacteria. Saudi J Biol Sci 2020; 27:3235-3248. [PMID: 33304129 PMCID: PMC7715526 DOI: 10.1016/j.sjbs.2020.09.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 11/15/2022] Open
Abstract
Soil is an integral part of ecosystem which is niche for varieties of microflora. The present study was investigated to isolate varied strains of bacteria from soil samples of three different geographical regions of Tamil Nadu (India) and evaluate their hydrolytic enzymes (amylase, cellulase, and inulinase) producing potentialities. Among 72 bacterial cultures isolated from Ambattur Industrial Estate, Neyveli Lignite Corporation, and Arignar Anna Zoological Park regions, 41.66, 38.88, and 36.11% of isolates were observed amylase, cellulase, and inulinase producers, respectively. On the other hand, 20.83% of total bacteria isolated from all three regions exhibited concurrent production of amylase, cellulase, and inulinase. Potent isolates depicting maximum enzyme activities were identified as Bacillus anthracis strain ALA1, Bacillus cereus strain ALA3, Glutamicibacter arilaitensis strain ALA4, and Bacillus thuringiensis strain ALA5 based on molecular characterization tools. Further, the thermodynamics parameters, open reading frames (ORFs) regions, and guanine-cytosine (GC) content were determined by distinct bioinformatics tools using 16S rRNA sequences of strains. Minimum free energy values for strain ALA1, strain ALA3, strain ALA4, and strain ALA5 were calculated as −480.73, −478.76, −496.63, and −479.03 kcal/mol, respectively. Mountain plot and entropy predicted the hierarchical representation of RNA secondary structure. The GC content of sequence for strain ALA1, strain ALA3, strain ALA4, and strain ALA5 was calculated as 53.06, 52.94, 56.78, and 53.06%, respectively. Nine ORFs were obtained for strain ALA1, strain ALA3, and strain ALA5 while 10 ORFs were observed for strain ALA4. Additionally, bootstrap tree demonstrated close resemblance of strains with existing bacteria of similar genus. Findings showed higher variability of bacterial diversity as hydrolytic enzymes producers in the investigated geographical regions.
Collapse
|
16
|
Du R, Zhao F, Qiao X, Song Q, Ye G, Wang Y, Wang B, Han Y, Zhou Z. Optimization and partial characterization of ca-independent α-amylase from Bacillus amyloliquefaciens BH1. Prep Biochem Biotechnol 2018; 48:768-774. [PMID: 30303444 DOI: 10.1080/10826068.2018.1504221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Strain Bacillus amyloliquefaciens BH1 was evaluated for the generation of α-amylase. Culture conditions and medium components were optimized by a statistical approach for the optimal generation of α-amylase with response surface methodology (RSM) method. The Plackett-Burman (PB) design was executed to select the fermentation variables and Central composite design (CCD) for optimizing significant factors influencing production. The optimum levels for highest generation of α-amylase activity (198.26 ± 3.54 U/mL) were measured. A 1.69-fold improve generation was acquired in comparison with the non-optimized. Partial characterization of the α-amylase indicated optimal pH and temperature at 7.0 and 40 °C, respectively. Crude α-amylase maintained a constant pH range 5.0-8.0 and 30-70 °C. The α-amylase was independent of Ca2+, and the activity was inhibited by Fe3+, Co2+, Cu2+, and Hg2+. The thermo and pH stability of the α-amylase indicate its extensive application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Renpeng Du
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Fangkun Zhao
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Xiaoxiao Qiao
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Qiaozhi Song
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Guangbin Ye
- b YoujiangMedical University for Nationalities , Guangxi , Baise , PR China
| | - Yu Wang
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Binbin Wang
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Ye Han
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| | - Zhijiang Zhou
- a School of Chemical Engineering and Technology , Tianjin University , Tianjin , PR China
| |
Collapse
|
17
|
Khusro A, Aarti C, Dusthackeer A, Agastian P. Enhancement of anti-tubercular activity and biomass of fermented food associated Staphylococcus hominis strain MANF2 using Taguchi orthogonal array and Box-Behnken design. Microb Pathog 2018; 120:8-18. [PMID: 29665438 DOI: 10.1016/j.micpath.2018.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/30/2018] [Accepted: 04/13/2018] [Indexed: 01/26/2023]
Abstract
The prime focus of the present investigation was to optimize statistically the anti-tubercular activity and biomass of fermented food associated Staphylococcus hominis strain MANF2 using Taguchi orthogonal array (OA) and Box-Behnken design (BBD). The anti-tubercular activity of strain MANF2 was determined against Mycobacterium tuberculosis H37Rv using luciferase reporter phase assay. Among varied media examined, the isolate exhibited impressive anti-tubercular activity with paramount relative light unit reduction of >90% in de Man Rogose Sharpe (MRS) broth. Primarily, the anti-tubercular activity and biomass of strain MANF2 were estimated in MRS broth by optimizing eight diversified parameters using one factor at a time (OFAT) method after working out a series of experiments. The most significant contributing factors selected through OFAT tool were optimized using Taguchi approach with a standard OA layout of L18 (22 × 36). Results demonstrated the significant (P ≤ 0.05) influence of pH, temperature, yeast extract, magnesium sulphate, and glycerol on response variables. These controlled variables were further optimized using BBD matrix at N = 46 by second-order polynomial equation. The fermentation medium of pH 6.5 constituting yeast extract (0.5% w/v), magnesium sulphate (0.1% w/v), and glycerol (1.5% v/v), being further incubated at 30 °C showed enhanced anti-tubercular activity (98.7%) and approximately 4 fold increment in the bacterial biomass yield (8.3 mg/mL) with respect to traditional OFAT method. Three-dimensional response plots of the quadratic model showed interdependent interaction between the significant variables. In conclusion, the present study revealed the first report on the optimization of anti-tubercular activity and biomass of S. hominis via Taguchi OA as well as BBD design, and thus, paved a path for its proficient applications in pharmaceutical industries as dynamic mycobactericidal agent in future.
Collapse
Affiliation(s)
- Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India
| | - Chirom Aarti
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India
| | - Azger Dusthackeer
- Department of Bacteriology, National Institute for Research in Tuberculosis, ICMR, Sathyamoorty Road, Chetpet, Chennai 31, Tamil Nadu, India
| | - Paul Agastian
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India.
| |
Collapse
|
18
|
Abu ML, Nooh HM, Oslan SN, Salleh AB. Optimization of physical conditions for the production of thermostable T1 lipase in Pichia guilliermondii strain SO using response surface methodology. BMC Biotechnol 2017; 17:78. [PMID: 29126403 PMCID: PMC5681800 DOI: 10.1186/s12896-017-0397-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/31/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Pichia guilliermondii was found capable of expressing the recombinant thermostable lipase without methanol under the control of methanol dependent alcohol oxidase 1 promoter (AOXp 1). In this study, statistical approaches were employed for the screening and optimisation of physical conditions for T1 lipase production in P. guilliermondii. RESULT The screening of six physical conditions by Plackett-Burman Design has identified pH, inoculum size and incubation time as exerting significant effects on lipase production. These three conditions were further optimised using, Box-Behnken Design of Response Surface Methodology, which predicted an optimum medium comprising pH 6, 24 h incubation time and 2% inoculum size. T1 lipase activity of 2.0 U/mL was produced with a biomass of OD600 23.0. CONCLUSION The process of using RSM for optimisation yielded a 3-fold increase of T1 lipase over medium before optimisation. Therefore, this result has proven that T1 lipase can be produced at a higher yield in P. guilliermondii.
Collapse
Affiliation(s)
- Mary Ladidi Abu
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Applied and Natural Sciences, Ibrahim Badamasi Babangida University Lapai, Niger State, Minna, Nigeria
| | - Hisham Mohd Nooh
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. .,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. .,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
19
|
Aarti C, Khusro A, Agastian P. Goat dung as a feedstock for hyper-production of amylase from Glutamicibacter arilaitensis strain ALA4. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0174-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
20
|
Enzymes and Nanoparticles Produced by Microorganisms and Their Applications in Biotechnology. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68424-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|