1
|
Thirunavookarasu N, Kumar S, Shetty P, Shanmugam A, Rawson A. Impact of ultrasound treatment on the structural modifications and functionality of carbohydrates - A review. Carbohydr Res 2024; 535:109017. [PMID: 38163393 DOI: 10.1016/j.carres.2023.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Carbohydrates are crucial in food as essential biomolecules, serving as natural components, ingredients, or additives. Carbohydrates have numerous applications in the food industry as stabilizers, thickeners, sweeteners, and humectants. The properties and functionality of the carbohydrates undergo alterations when exposed to various thermal or non-thermal treatments. Ultrasonication is a non-thermal method that modifies the structural arrangement of carbohydrate molecules. These structural changes lead to enhanced gelling and viscous nature of the carbohydrates, thus enhancing their scope of application. Ultrasound may improve carbohydrate functionality in an environmentally sustainable way, leaving no chemical residues. The high-energy ultrasound treatments significantly reduce the molecular size of complex carbohydrates. Sonication parameters like treatment intensity, duration of treatment, and energy applied significantly affect the molecular size, depolymerization, viscosity, structural modifications, and functionality of carbohydrate biomolecules. This review provides a comprehensive analysis of ultrasound-assisted modifications in carbohydrates and the changes in functional properties induced by sonication.
Collapse
Affiliation(s)
- Nirmal Thirunavookarasu
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Sumit Kumar
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Prakyath Shetty
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Akalya Shanmugam
- Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Food Processing Business Incubation Centre, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India.
| |
Collapse
|
2
|
Li X, Xiang Z, Dang W, Lin Z, Wang H, Wang H, Ye D, Yao R. High-yield and scalable cellulose nanomesh preparation via dilute acid vapor and enzymatic hydrolysis-mediated nanofabrication. Carbohydr Polym 2024; 323:121370. [PMID: 37940267 DOI: 10.1016/j.carbpol.2023.121370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023]
Abstract
Nanocellulose has received considerable attention in diverse research fields owing to its unique nanostructure-mediated physicochemical properties. However, classical acid hydrolysis usually destroys the microstructural integrity of cellulose, leading to the violent dissociation of cellulose into low-dimensional nanofibers and limiting the formation of intact structures with high specific surface areas. Herein, we have optimized the methodology of dilute acid vapor hydrolysis combined with the enzymatic hydrolysis (DAVE) method and investigated the pore formation mechanism of cellulose nanomesh (CNM). Benefiting from the selective nano-engraving effect of hydrochloric acid vapor on the amorphous region of cellulose followed by widening of the three-dimensional nanopores using enzymatic hydrolysis, confirmed by topographic, spectroscopic, and crystallographic tests, the as-prepared CNM, significantly different from the existing nanocellulose, exhibited improved specific surface area (98.37 m2/g), high yield (88.5 %), high crystallinity (73.4 %), and excellent thermal stability (375.4 °C). The proposed DAVE approach may open a new avenue for nanocellulose manufacturing.
Collapse
Affiliation(s)
- Xiaowen Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Zhongrun Xiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Wanting Dang
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Zewan Lin
- College of Light Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China; Biomass Molecular Engineering Centre, Hefei, Anhui 230036, China
| | - Huai Wang
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Huiqing Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| | - Dongdong Ye
- College of Light Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China; Biomass Molecular Engineering Centre, Hefei, Anhui 230036, China.
| | - Risheng Yao
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| |
Collapse
|
3
|
Zadeike D, Degutyte R. Recent Advances in Acoustic Technology in Food Processing. Foods 2023; 12:3365. [PMID: 37761074 PMCID: PMC10530031 DOI: 10.3390/foods12183365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The development of food industry technologies and increasing the sustainability and effectiveness of processing comprise some of the relevant objectives of EU policy. Furthermore, advances in the development of innovative non-thermal technologies can meet consumers' demand for high-quality, safe, nutritious, and minimally processed foods. Acoustic technology is characterized as environmentally friendly and is considered an alternative method due to its sustainability and economic efficiency. This technology provides advantages such as the intensification of processes, increasing the efficiency of processes and eliminating inefficient ones, improving product quality, maintaining the product's texture, organoleptic properties, and nutritional value, and ensuring the microbiological safety of the product. This review summarizes some important applications of acoustic technology in food processing, from monitoring the safety of raw materials and products, intensifying bioprocesses, increasing the effectiveness of the extraction of valuable food components, modifying food polymers' texture and technological properties, to developing biodegradable biopolymer-based composites and materials for food packaging, along with the advantages and challenges of this technology.
Collapse
Affiliation(s)
- Daiva Zadeike
- Department of Food Science and Technology, Faculty of Chemical Technology, Kaunas University of Technology, 50254 Kaunas, Lithuania;
| | | |
Collapse
|
4
|
The Role of Emergent Processing Technologies in Beer Production. BEVERAGES 2023. [DOI: 10.3390/beverages9010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The brewing industry is regarded as a fiercely competitive and insatiable sector of activity, driven by the significant technological improvements observed in recent years and the most recent consumer trends pointing to a sharp demand for sensory enhanced beers. Some emergent and sustainable technologies regarding food processing such as pulsed electric fields (PEF), ultrasound (US), thermosonication (TS), high-pressure processing (HPP), and ohmic heating (OH) have shown the potential to contribute to the development of currently employed brewing methodologies by both enhancing the quality of beer and contributing to processing efficiency with a promise of being more environmentally friendly. Some of these technologies have not yet found their way into the industrial brewing process but already show potential to be embedded in continuous thermal and non-thermal unit operations such as pasteurization, boiling and sterilization, resulting in beer with improved organoleptic properties. This review article aims to explore the potential of different advanced processing technologies for industrial application in several key stages of brewing, with particular emphasis on continuous beer production.
Collapse
|
5
|
Taha A, Mehany T, Pandiselvam R, Anusha Siddiqui S, Mir NA, Malik MA, Sujayasree OJ, Alamuru KC, Khanashyam AC, Casanova F, Xu X, Pan S, Hu H. Sonoprocessing: mechanisms and recent applications of power ultrasound in food. Crit Rev Food Sci Nutr 2023; 64:6016-6054. [PMID: 36591874 DOI: 10.1080/10408398.2022.2161464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
- Department of Chemistry, University of La Rioja, Logroño, Spain
| | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- DIL e.V.-German Institute of Food Technologies, Quakenbrück, Germany
| | - Nisar A Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering (UIE), Chandigarh University, Mohali, India
| | - Mudasir Ahmad Malik
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, India
| | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| |
Collapse
|
6
|
Gavahian M, Manyatsi TS, Morata A, Tiwari BK. Ultrasound-assisted production of alcoholic beverages: From fermentation and sterilization to extraction and aging. Compr Rev Food Sci Food Saf 2022; 21:5243-5271. [PMID: 36214172 DOI: 10.1111/1541-4337.13043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/07/2022] [Accepted: 08/26/2022] [Indexed: 01/28/2023]
Abstract
Ultrasound is sound waves above 20 kHz that can be used as a nonthermal ''green'' technology for agri-food processing. It has a cavitation effect, causing bubbles to form and collapse rapidly as they travel through the medium during ultrasonication. Therefore, it inactivates microorganisms and enzymes through cell membrane disruption with physicochemical and sterilization effects on foods or beverages. This emerging technology has been explored in wineries to improve wine color, taste, aroma, and phenolic profile. This paper aims to comprehensively review the research on ultrasound applications in the winery and alcoholic beverages industry, discuss the impacts of this process on the physicochemical properties of liquors, the benefits involved, and the research needed in this area. Studies have shown that ultrasonic technology enhances wine maturation, improves wine fermentation, accelerates wine aging, and deactivates microbes while enhancing quality, as observed with better critical aging markers such as phenolic compounds and color intensity. Besides, ultrasound enhances phytochemical, physicochemical, biological, and organoleptic properties of alcoholic beverages. For example, this technology increased anthocyanin in red wine by 50%. It also enhanced the production rate by decreasing the aging time by more than 90%. Ultrasound can be considered an economically viable technology that may contribute to wineries' waste valorization, resource efficiency improvement, and industry profit enhancement. Despite numerous publications and successful industrial applications discussed in this paper, ultrasound up-scaling and applications for other types of liquors need further efforts.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Republic of China, Taiwan
| | - Thabani Sydney Manyatsi
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Republic of China, Taiwan
| | - Antonio Morata
- Departamento de Química y Tecnología de Alimentos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Brijesh K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| |
Collapse
|
7
|
Soro AB, Oliveira M, O'Donnell CP, Tiwari BK. Ultrasound assisted modulation of yeast growth and inactivation kinetics. ULTRASONICS SONOCHEMISTRY 2021; 80:105819. [PMID: 34768062 PMCID: PMC8591419 DOI: 10.1016/j.ultsonch.2021.105819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The yeast Saccharomyces cerevisiae is well known for its application in the food industry for the purpose of developing fermented food. The ultrasound (US) technology offer a wide range of applications for the food industry, including the enhancement of fermentation rates and inactivation of microbial cells. However, a better understanding and standardization of this technology is still required to ensure the scaling-up process. This study investigated the effect of the US technology on the growth of S. cerevisiae using frequencies of 20, 25, 45 and 130 kHz, treatment periods from 2 to 30 min. Furthermore, yeast kinetics subjected to US treatments were evaluated using modelling tools and scanning electron microscopy (SEM) analysis to explore the impact of sonication on yeast cells. Yeast growth was monitored after different US treatments plotting optical density (OD) at 660 nm for 24 h at 30 ⁰C. Growth curves were fitted using models of modified Gompertz and Scale-Free which showed good parameters of the fit. In particular, US frequencies of 45 and 130 kHz did not have a disruptive effect in lag phase and growth rate of the yeast populations, unlike the frequency of 20 kHz. Moreover, inactivation curves of yeast cells obtained after exposure to 20 and 25 kHz also observed the best fit using the Weibull model. US frequency of 20 kHz achieved significant reductions of 1.3 log cfu/mL in yeast concentration and also induced important cell damage on the external structures of S. cerevisiae. In conclusion, the present study demonstrated the significant effect of applying different US frequencies on the yeast growth for potential application in the food industry.
Collapse
Affiliation(s)
- Arturo B Soro
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Márcia Oliveira
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Colm P O'Donnell
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Brijesh K Tiwari
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
8
|
Abun A, Rusmana D, Widjastuti T, Haetami K. PrebioticsBLS from encapsulated of extract of shrimp waste bioconversion on feed supplement quality and its implication of metabolizable energy and digestibility at Indonesian local chicken. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1946402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Abun Abun
- Department of Animal Nutrition and Feed Technology, Padjadjaran University, Sumedang, Indonesia
| | - Denny Rusmana
- Department of Animal Nutrition and Feed Technology, Padjadjaran University, Sumedang, Indonesia
| | - Tuti Widjastuti
- Department of Animal Production, Padjadjaran University, Sumedang, Indonesia
| | - Kiki Haetami
- Department of Fisheries, Padjadjaran University, Sumedang, Indonesia
| |
Collapse
|
9
|
Ultrasonic Modulation of the Technological and Functional Properties of Yeast Strains. Microorganisms 2020; 8:microorganisms8091399. [PMID: 32932961 PMCID: PMC7564850 DOI: 10.3390/microorganisms8091399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
This research was aimed at studying the effects of low intensity ultrasound (US) on some technological and functional properties of eight strains of Saccharomyces cerevisiae; namely, growth patterns (growth at 2–5% of NaCl or at 37 °C), autoaggregation and tolerance to simulated gastrointestinal conditions were evaluated. A US treatment was applied at 20% of net power (130 W) by a modulating duration (2–10 min) and pulses (2–10 s). The viable count (4.81–6.33 log CFU/mL) was not affected by US, while in terms of technological traits the effect was strain specific; in particular, for some strains a positive effect of US was found with a significant growth enhancement (growth index > 120%). The treatment was also able to increase the autoaggregation of some strains, thus suggesting that US could represent a promising way to treat and select nonconventional functional yeasts for food applications.
Collapse
|
10
|
Al Daccache M, Koubaa M, Salameh D, Maroun RG, Louka N, Vorobiev E. Ultrasound-assisted fermentation for cider production from Lebanese apples. ULTRASONICS SONOCHEMISTRY 2020; 63:104952. [PMID: 31945563 DOI: 10.1016/j.ultsonch.2019.104952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The present work studies the impact of low-intensity ultrasound (US) on Hanseniaspora sp. yeast fermentations. The effect of pulse duration and growth phase on US application was first evaluated using a synthetic medium. The optimal conditions were then applied to apple juice US-assisted fermentation. An US treatment chamber was first designed to allow the recycling of the culture medium. The optimal US pulse duration on the yeast growth rate was of 0.5 s followed by 6 s rest period, and during 6 h of both Lag and Log phases. These US parameters led to a faster consumption of glucose in the medium during the fermentation, compared to the untreated culture. The impact of US was also depending on the growth phase, showing higher sensitivity of the yeast to US during the Lag phase rather than the Log phase. US-assisted fermentation of apple juice showed a significant increase in biomass growth and glucose consumption, along with a significant decrease in the ethanol yield. The fastest growth kinetic (by 52%), and the highest ethanol reduction (by 0.55% (v, v)) were obtained for the treatment during the first 12 h of fermentation, thereby, the stationary phase was reached faster, and the maximum biomass growth rate was 10 folds higher compared to the untreated culture. The results obtained in this study demonstrated the promising efficiency of US-assisted fermentation in stimulating the biomass growth and reducing the ethanol content in alcoholic beverages.
Collapse
Affiliation(s)
- Marina Al Daccache
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CS 60319, 60203 Compiègne cedex, France; Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA, Laboratoire CTA, Université Saint-Joseph, Beyrouth, Lebanon
| | - Mohamed Koubaa
- ESCOM, UTC, EA 4297 TIMR, 1 allée du réseau Jean-Marie Buckmaster, 60200 Compiègne, France.
| | - Dominique Salameh
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA, Laboratoire CTA, Université Saint-Joseph, Beyrouth, Lebanon
| | - Richard G Maroun
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA, Laboratoire CTA, Université Saint-Joseph, Beyrouth, Lebanon
| | - Nicolas Louka
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA, Laboratoire CTA, Université Saint-Joseph, Beyrouth, Lebanon
| | - Eugène Vorobiev
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CS 60319, 60203 Compiègne cedex, France
| |
Collapse
|