1
|
Lim WH, Khaw ML, Yungeree O, Hew WH, Parab AR, Chew BL, Wahyuni DK, Subramaniam S. Effects of LEDs, macronutrients and culture conditions on biomass and artemisinin production using Artemisia annua L. suspension cultures. Biotechnol Prog 2025:e70041. [PMID: 40410819 DOI: 10.1002/btpr.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/25/2025] [Accepted: 05/07/2025] [Indexed: 05/25/2025]
Abstract
Artemisinin is a sesquiterpene lactone extracted from the medicinal plant Artemisia annua L. (sweet wormwood). It has traditionally been utilized in artemisinin-based combination therapies (ACTs) for the malarial parasite, including drug-resistant strains. Natural artemisinin extraction is costly with low yields. Due to its effectiveness, there is a significant rise in the demand for artemisinin production. In vitro cell suspension culture offers a cost-effective and viable technique for artemisinin production. Therefore, this study aimed to optimize a protocol for cell suspension culture of A. annua L. to enhance biomass and artemisinin production. A successful cell suspension culture was initiated from induced callus. The highest cell biomass was obtained in suspension cultures grown with an initial inoculum size of 0.1 g of mixed type cell aggregates, in media with a pH of 6.2 and a rotation speed of 90 rpm. Macronutrient concentrations influenced both biomass and artemisinin content, with optimal biomass achieved at 19 mM KNO3 and 1.56 mM KH2PO4. The absence of these nutrients resulted in the highest artemisinin levels. Different LED wavelengths also significantly influenced biomass and artemisinin production. Red + blue LED increased cell biomass, while the highest artemisinin content was observed under red LED. The upscaling of the culture indicated a variation in biomass yield pattern, but the highest growth index was achieved in the 500 mL Erlenmeyer flask. This study successfully established a cell suspension culture for A. annua L., demonstrating the influence of macronutrients and red LED on biomass and artemisinin production, providing insights for potential large-scale production.
Collapse
Affiliation(s)
- Wei Heng Lim
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Penang, Malaysia
| | - Mei Lin Khaw
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Penang, Malaysia
| | - Oyunbileg Yungeree
- Laboratory of Plant Biotechnology, Institute of Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Wei Heng Hew
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Penang, Malaysia
| | - Ankita Rajendra Parab
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Penang, Malaysia
| | - Bee Lynn Chew
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Penang, Malaysia
| | - Dwi Kusuma Wahyuni
- Department of Biology, Faculty of Science and Technology Universitas Airlangga, Surabaya, Indonesia
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Penang, Malaysia
- Department of Biology, Faculty of Science and Technology Universitas Airlangga, Surabaya, Indonesia
- Centre For Chemical Biology (CCB), Universiti Sains Malaysia (USM), Bayan Lepas, Penang, Malaysia
| |
Collapse
|
2
|
Buffière P, Ramirez DA, Franco RT, Figueras J, Hattou S, Benbelkacem H. Oxygen traces impact on biological methanation from hydrogen and CO 2. BIORESOURCE TECHNOLOGY 2025; 419:132080. [PMID: 39826758 DOI: 10.1016/j.biortech.2025.132080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Biomethane production from biological methanation of CO2 is promising both for biogas upgrading and surplus renewable energy storage. One of the questions for process upscaling is the impact of oxygen (in the biogas or in the purified CO2-rich off-gas) on the biological process. An adapted anaerobic thermophilic consortium was submitted to increasing amounts of oxygen in batch and continuous tests at partial pressures ranging from 0 to 50 mbar. Oxygen was quickly consumed and hydrogen uptake remained similar. In the same time, methane production dropped (-4 % in continuous tests). Part of the oxygen introduced was reduced biologically by hydrogen. The amount of hydrogen diverted to oxygen reduction (up to 15 % at 50 mbar O2) was proportional to the oxygen partial pressure. These results suggest that biological methanation systems tolerate the presence of oxygen. However, additional hydrogen should be added to maintain the conversion of CO2 into methane.
Collapse
Affiliation(s)
| | | | | | - Julie Figueras
- INSA Lyon, DEEP, UR7429 69621 Villeurbanne Cedex, France
| | | | | |
Collapse
|
3
|
Al-Sharify ZT, Al-Najjar SZ, Naser ZA, Alsherfy ZAI, Onyeaka H. The Impact of Fluid Flow on Microbial Growth and Distribution in Food Processing Systems. Foods 2025; 14:401. [PMID: 39941998 PMCID: PMC11817348 DOI: 10.3390/foods14030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
This article examines the impact of fluid flow dynamics on microbial growth, distribution, and control within food processing systems. Fluid flows, specifically laminar and turbulent flows, significantly influence microbial behaviors, such as biofilm development and microbial adhesion. Laminar flow is highly conducive to biofilm formation and microbial attachment because the flow is smooth and steady. This smooth flow makes it much more difficult to sterilize the surface. Turbulent flow, however, due to its chaotic motion and the shear forces that are present, inhibits microbial growth because it disrupts attachment; however, it also has the potential to contaminate surfaces by dispersing microorganisms. Computational fluid dynamics (CFD) is highlighted as an essential component for food processors to predict fluid movement and enhance numerous fluid-dependent operations, including mixing, cooling, spray drying, and heat transfer. This analysis underscores the significance of fluid dynamics in controlling microbial hazards in food settings, and it discusses some interventions, such as antimicrobial surface treatments and properly designed equipment. Each process step from mixing to cooling, which influences heat transfer and microbial control by ensuring uniform heat distribution and optimizing heat removal, presents unique fluid flow requirements affecting microbial distribution, biofilm formation, and contamination control. Food processors can improve microbial management and enhance product safety by adjusting flow rates, types, and equipment configurations. This article helps provide an understanding of fluid-microbe interactions and offers actionable insights to advance food processing practices, ensuring higher standards of food safety and quality control.
Collapse
Affiliation(s)
- Zainab Talib Al-Sharify
- Department of Oil and Gas Refining Engineering, Al Hikma University College, Baghdad 10052, Iraq;
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Baghdad 10047, Iraq;
| | - Shahad Zuhair Al-Najjar
- Chemical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad 10081, Iraq;
| | - Zainab A. Naser
- Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Baghdad 10047, Iraq;
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Zhou M, Taiwo K, Wang H, Ntihuga JN, Angenent LT, Usack JG. Anaerobic digestion of process water from hydrothermal treatment processes: a review of inhibitors and detoxification approaches. BIORESOUR BIOPROCESS 2024; 11:47. [PMID: 38713232 PMCID: PMC11076452 DOI: 10.1186/s40643-024-00756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/31/2024] [Indexed: 05/08/2024] Open
Abstract
Integrating hydrothermal treatment processes and anaerobic digestion (AD) is promising for maximizing resource recovery from biomass and organic waste. The process water generated during hydrothermal treatment contains high concentrations of organic matter, which can be converted into biogas using AD. However, process water also contains various compounds that inhibit the AD process. Fingerprinting these inhibitors and identifying suitable mitigation strategies and detoxification methods is necessary to optimize the integration of these two technologies. By examining the existing literature, we were able to: (1) compare the methane yields and organics removal efficiency during AD of various hydrothermal treatment process water; (2) catalog the main AD inhibitors found in hydrothermal treatment process water; (3) identify recalcitrant components limiting AD performance; and (4) evaluate approaches to detoxify specific inhibitors and degrade recalcitrant components. Common inhibitors in process water are organic acids (at high concentrations), total ammonia nitrogen (TAN), oxygenated organics, and N-heterocyclic compounds. Feedstock composition is the primary determinant of organic acid and TAN formation (carbohydrates-rich and protein-rich feedstocks, respectively). In contrast, processing conditions (e.g., temperature, pressure, reaction duration) influence the formation extent of oxygenated organics and N-heterocyclic compounds. Struvite precipitation and zeolite adsorption are the most widely used approaches to eliminate TAN inhibition. In contrast, powdered and granular activated carbon and ozonation are the preferred methods to remove toxic substances before AD treatment. Currently, ozonation is the most effective approach to reduce the toxicity and recalcitrance of N and O-heterocyclic compounds during AD. Microaeration methods, which disrupt the AD microbiome less than ozone, might be more practical for nitrifying TAN and degrading recalcitrant compounds, but further research in this area is necessary.
Collapse
Affiliation(s)
- Mei Zhou
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Kayode Taiwo
- Department of Food Science and Technology, University of Georgia, 100 Cedar Street, Athens, GA, 30602, USA
| | - Han Wang
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Jean-Nepomuscene Ntihuga
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
- Max Planck Institute for Biology Tübingen, AG Angenent, Max Planck Ring 5, 72076, Tübingen, Germany
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds vej 10D, 8000, Aarhus C, Denmark
- The Novo Nordisk Foundation CO2 Research Center (CORC), Aarhus University, Gustav Wieds vej 10C, 8000, Aarhus C, Denmark
- Cluster of Excellence, Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72074, Tübingen, Germany
| | - Joseph G Usack
- Department of Food Science and Technology, University of Georgia, 100 Cedar Street, Athens, GA, 30602, USA.
- New Materials Institute, University of Georgia, 220 Riverbend Rd, Athens, GA, 30602, USA.
- Institute for Integrative Agriculture, Office of Research, University of Georgia, 130 Coverdell Center, 500 D.W. Brooks Dr., Athens, GA, 30602, USA.
| |
Collapse
|
5
|
Mendoza-Tinoco TP, Durán-Hinojosa U, Sánchez-Vázquez V, Fajardo-Ortiz MDC, Beristain-Cardoso R, González I. Influence of water electrolysis on hydrolysis and methanogenesis stages of anaerobic digestion at room temperature: Kinetic and metabolic analysis. BIORESOURCE TECHNOLOGY 2024; 394:130096. [PMID: 38096995 DOI: 10.1016/j.biortech.2023.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Batch cultures were performed to study hydrolysis and methanogenesis in the presence of an electric field at room temperature (i.e., 23 °C). Kinetic and metabolic analyses using RuO2/Ti electrodes were carried out in short reaction times to avoid biofilm formation, allowing the evaluation of the effect of O2 and H2 produced on anaerobic digestion during the imposition of three electric fields: 1.21, 1.45, and 1.64 V/cm. Results highlighted that at 1.21 V/cm, the electrolysis produced 0.0753 mg O2/L·min, where facultative microorganisms consumed 21 % oxygen, enhancing the hydrolysis phase by 52 %. Additionally, methane production was noticeably improved with an activity of 0.89 ± 0.02 g COD-CH4/g VSS·d, meaning 39 % higher than the control. The imposition of an electric field showed promising results since the methanogenic activity at room temperature was very close to the activities observed in conventional reactors at 35 °C.
Collapse
Affiliation(s)
- Tania Paola Mendoza-Tinoco
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Iztapalapa, 09310 CDMX, Mexico
| | - Ulises Durán-Hinojosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Iztapalapa, 09310 CDMX, Mexico
| | - Víctor Sánchez-Vázquez
- Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Iztapalapa, 09310 CDMX, Mexico
| | - María Del Carmen Fajardo-Ortiz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Iztapalapa, 09310 CDMX, Mexico
| | - Ricardo Beristain-Cardoso
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana Unidad Lerma, Av. de las Garzas No 10, El panteón, 52005 Lerma de Villada, Méx, Mexico
| | - Ignacio González
- Departamento de Química, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Iztapalapa, 09310 CDMX, Mexico.
| |
Collapse
|
6
|
Wu Z, Nguyen D, Shrestha S, Raskin L, Khanal SK, Lee PH. Evaluation of Nanaerobic Digestion as a Mechanism to Explain Surplus Methane Production in Animal Rumina and Engineered Digesters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12302-12314. [PMID: 37565790 PMCID: PMC10448717 DOI: 10.1021/acs.est.2c07813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Nanaerobes are a newly described class of microorganisms that use a unique cytochrome bd oxidase to achieve nanaerobic respiration at <2 μM dissolved oxygen (∼1% of atmospheric oxygen) but are not viable above this value due to the lack of other terminal oxidases. Although sharing an overlapping ecological niche with methanogenic archaea, the role of nanaerobes in methanogenic systems has not been studied so far. To explore their occurrence and significance, we re-analyzed published meta-omic datasets from animal rumina and waste-to-energy digesters, including conventional anaerobic digesters and anaerobic digesters with ultra-low oxygenation. Results show that animal rumina share broad similarities in the microbial community and system performance with oxygenated digesters, rather than with conventional anaerobic digesters, implying that trace levels of oxygen drive the efficient digestion in ruminants. The rumen system serves as an ideal model for the newly named nanaerobic digestion, as it relies on the synergistic co-occurrence of nanaerobes and methanogens for methane yield enhancement. The most abundant ruminal bacterial family Prevotellaceae contains many nanaerobes, which perform not only anaerobic fermentation but also nanaerobic respiration using cytochrome bd oxidase. These nanaerobes generally accompany hydrogenotrophic methanogens to constitute a thermodynamically and physiologically consistent framework for efficient methane generation. Our findings provide new insights into ruminal methane emissions and strategies to enhance methane generation from biomass.
Collapse
Affiliation(s)
- Zhuoying Wu
- Department
of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United
Kingdom
- Shanghai
Shaanxi Coal Hi-tech Research Institute Co., Ltd., Shanghai 201613, China
| | - Duc Nguyen
- Department
of Molecular Biosciences and Bioengineering, University of Hawai’i at Ma̅noa, Honolulu 96822, Hawaii, United States
- The
Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Shilva Shrestha
- Department
of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor 48109, Michigan, United States
- Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lutgarde Raskin
- Department
of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor 48109, Michigan, United States
| | - Samir Kumar Khanal
- Department
of Molecular Biosciences and Bioengineering, University of Hawai’i at Ma̅noa, Honolulu 96822, Hawaii, United States
| | - Po-Heng Lee
- Department
of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United
Kingdom
| |
Collapse
|
7
|
Xia P, Zhou H, Sun H, Sun Q, Griffiths R. Research on a Fiber Optic Oxygen Sensor Based on All-Phase Fast Fourier Transform (apFFT) Phase Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:6753. [PMID: 36146102 PMCID: PMC9506041 DOI: 10.3390/s22186753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Fiber optic oxygen sensors based on fluorescence quenching play an important role in oxygen sensors. They have several advantages over other methods of oxygen sensing-they do not consume oxygen, have a short response time and are of high sensitivity. They are often used in special environments, such as hazardous environments and in vivo. In this paper, a new fiber optic oxygen sensor is introduced, which uses the all-phase fast Fourier transform (apFFT) algorithm, instead of the previous lock-in amplifier, for the phase detection of excitation light and fluorescence. The excitation and fluorescence frequency was 4 KHz, which was conducted between the oxygen-sensitive membrane and the photoelectric conversion module by the optical fiber and specially-designed optical path. The phase difference of the corresponding oxygen concentration was obtained by processing the corresponding electric signals of the excitation light and the fluorescence. At 0%, 5%, 15%, 21% and 50% oxygen concentrations, the experimental results showed that the apFFT had good linearity, precision and resolution-0.999°, 0.05° and 0.0001°, respectively-and the fiber optic oxygen sensor with apFFT had high stability. When the oxygen concentrations were 0%, 5%, 15%, 21% and 50%, the detection errors of the fiber optic oxygen sensor were 0.0447%, 0.1271%, 0.3801%, 1.3426% and 12.6316%, respectively. Therefore, the sensor that we designed has greater accuracy when measuring low oxygen concentrations, compared with high oxygen concentrations.
Collapse
Affiliation(s)
- Pengkai Xia
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Haiyang Zhou
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Haozhe Sun
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Qingfeng Sun
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Rupert Griffiths
- City and Urban Research Lab, LICA, Lancaster University, Lancaster LA1 4YW, UK
| |
Collapse
|
8
|
Scale-Up of Capsular Polysaccharide Production Process by Haemophilus influenzae Type b Using kLa Criterion. Bioengineering (Basel) 2022; 9:bioengineering9090415. [PMID: 36134961 PMCID: PMC9495314 DOI: 10.3390/bioengineering9090415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Polyribosyl-ribitol-phosphate (PRP) from Haemophilus influenzae type b (Hib) is an active immunizing molecule used in the production of the vaccine against H. influenzae, and industrial production could contribute to satisfying a world demand especially in developing countries. In this sense, the aim of this study was to establish a scale-up process using the constant oxygen mass transfer coefficient (kLa) such as the criterion for production of PRP in three different sizes of bioreactor systems. Three different kLa values (24, 52 and 80 h−1) were evaluated in which the biological influence in a 1.5 L bioreactor and 52 h−1 was selected to scale-up the production process until a 75 L pilot-scale bioreactor was achieved. Finally, the fed-batch phase was started under a dissolved oxygen concentration (pO2) at 30% of the saturation in the 75 L bioreactor to avoid oxygen limitation; the performance of production presented high efficiency (9.0 g/L DCW-dry cell weight and 1.4 g/L PRP) in comparison with previous scale-up studies. The yields, productivity and kinetic behavior were similar in the three-size bioreactor systems in the batch mode indicating that kLa is possible to use for PRP production at large scales. This process operated under two stages and successfully produced DCW and PRP in the pilot scale and could be beneficial for future bioprocess operations that may lead to higher production and less operative cost.
Collapse
|