1
|
de Lima LF, Goulart S, Martha GG, Lopes S, Antonelli M, Goldberg DW, Sandri S, Piccinin INL, Kolesnikovas CKM, Maraschin M. Detection of phthalate esters and targeted metabolome analysis in Franciscana dolphin (Pontoporia blainvillei) blubber in the coast of Santa Catarina, southern Brazil. MARINE POLLUTION BULLETIN 2024; 205:116598. [PMID: 38885576 DOI: 10.1016/j.marpolbul.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
The concerning of plastic pollution in different ecosystems has been worsened by the widespread presence. Phthalate esters (PAEs), plasticizers found in everyday products, can migrate into the environment, especially into the oceans. Researches on their effects on cetaceans are still rare. Metabolomics helps assess perturbations induced by exposure to PAEs, which act as persistent endocrine disruptors. Four PAEs (dimethyl phthalate - DMP, diethyl phthalate - DEP, dibutyl phthalate - DBP, and di(2-ethylhexyl phthalate - DEHP) were analyzed, along with cholesterol and fatty acid profiles of P. blainvillei's blubber samples collected in southern Brazil. The study reveals pervasive contamination by PAEs - especially DEHP, present in all samples - with positive correlations between DEP content and animal size and weight, as well as between the DEHP amount and the C17:1 fatty acid. These findings will be relevant to conservation efforts aimed at this threatened species and overall marine ecosystems.
Collapse
Affiliation(s)
- Lucas Fazardo de Lima
- Laboratório de Morfogênese e Bioquímica Vegetal, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Suelen Goulart
- Laboratório de Morfogênese e Bioquímica Vegetal, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Giulia Galani Martha
- Laboratório de Morfogênese e Bioquímica Vegetal, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Susane Lopes
- Laboratório de Morfogênese e Bioquímica Vegetal, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | - Isadora Nicole Lara Piccinin
- Laboratório de Morfogênese e Bioquímica Vegetal, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Marcelo Maraschin
- Laboratório de Morfogênese e Bioquímica Vegetal, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
2
|
Koubaa M. Integrated Biorefinery for a Next-Generation Methanization Process Focusing on Volatile Fatty Acid Valorization: A Critical Review. Molecules 2024; 29:2477. [PMID: 38893350 PMCID: PMC11173433 DOI: 10.3390/molecules29112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the critical issue of a rapidly increasing worldwide waste stream and the need for sustainable management. The paper proposes an integrated transformation toward a next-generation methanization process, which leads not only to treating waste but also to converting it into higher value compounds and greener energy. Although the current and commonly used anaerobic digestion process is useful for biogas production, it presents limitations of resource exploitation and some negative environmental impacts. Focusing on the acidogenic stage in waste stream processing, the paper discusses the recent strategies to enhance the recovery of volatile fatty acids (VFAs). These acids serve as precursors for synthesizing a variety of biochemicals and biofuels, offering higher value products than solely energy recovery and soil fertilizers. Additionally, the importance of recycling the fermentation residues back into the biorefinery process is highlighted. This recycling not only generates additional VFAs but also contributes to generating clean energy, thereby enhancing the overall sustainability and efficiency of the waste management system. Moreover, the review discusses the necessity to integrate life cycle assessment (LCA) and techno-economic analysis (TEA) to evaluate the environmental impacts, sustainability, and processing costs of the proposed biorefinery.
Collapse
Affiliation(s)
- Mohamed Koubaa
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60319, 60203 Compiègne Cedex, France
| |
Collapse
|
3
|
Nemer G, Louka N, Rabiller Blandin P, Maroun RG, Vorobiev E, Rossignol T, Nicaud JM, Guénin E, Koubaa M. Purification of Natural Pigments Violacein and Deoxyviolacein Produced by Fermentation Using Yarrowia lipolytica. Molecules 2023; 28:4292. [PMID: 37298767 PMCID: PMC10254742 DOI: 10.3390/molecules28114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Violacein and deoxyviolacein are bis-indole pigments synthesized by a number of microorganisms. The present study describes the biosynthesis of a mixture of violacein and deoxyviolacein using a genetically modified Y. lipolytica strain as a production chassis, the subsequent extraction of the intracellular pigments, and ultimately their purification using column chromatography. The results show that the optimal separation between the pigments occurs using an ethyl acetate/cyclohexane mixture with different ratios, first 65:35 until both pigments were clearly visible and distinguishable, then 40:60 to create a noticeable separation between them and recover the deoxyviolacein, and finally 80:20, which allows the recovery of the violacein. The purified pigments were then analyzed by thin-layer chromatography and nuclear magnetic resonance.
Collapse
Affiliation(s)
- Georgio Nemer
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (N.L.); (R.G.M.)
| | - Nicolas Louka
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (N.L.); (R.G.M.)
| | - Paul Rabiller Blandin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| | - Richard G. Maroun
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (N.L.); (R.G.M.)
| | - Eugène Vorobiev
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| | - Tristan Rossignol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (T.R.); (J.-M.N.)
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (T.R.); (J.-M.N.)
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| | - Mohamed Koubaa
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| |
Collapse
|
4
|
Qin N, Li L, Wang Z, Shi S. Microbial production of odd-chain fatty acids. Biotechnol Bioeng 2023; 120:917-931. [PMID: 36522132 DOI: 10.1002/bit.28308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Odd-chain fatty acids (OcFAs) and their derivatives have attracted much attention due to their beneficial physiological effects and their potential to be alternatives to advanced fuels. However, cells naturally produce even-chain fatty acids (EcFAs) with negligible OcFAs. In the process of biosynthesis of fatty acids (FAs), the acetyl-CoA serves as the starter unit for EcFAs, and propionyl-CoA works as the starter unit for OcFAs. The lack of sufficient propionyl-CoA, the precursor, is usually regarded as the main restriction for large-scale bioproduction of OcFAs. In recent years, synthetic biology strategies have been used to modify several microorganisms to produce more propionyl-CoA that would enable an efficient biosynthesis of OcFAs. This review discusses several reported and potential metabolic pathways for propionyl-CoA biosynthesis, followed by advances in engineering several cell factories for OcFAs production. Finally, trends and challenges of synthetic biology driven OcFAs production are discussed.
Collapse
Affiliation(s)
- Ning Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lingyun Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zheng Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
5
|
Valorization of Low-Cost Substrates for the Production of Odd Chain Fatty Acids by the Oleaginous Yeast Yarrowia lipolytica. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Odd-chain fatty acids (OCFAs) have recently gained interest as target compounds in microbial production due to their diverse applications in the medical, pharmaceutical and chemical industries for the production of biofuels. Yarrowia lipolytica is a promising oleaginous yeast that has the ability to accumulate high quantities of fatty acids. However, the use of Y. lipolytica oils is still under research, in order to decrease the production costs related to the fermentation process and improve economic feasibility. In this work, sugar beet molasses (10–50 g/L) and crude glycerol (30 g/L) were used as the main carbon sources to reduce the processing costs of oil production from a genetically engineered Y. lipolytica strain. The effects of medium composition were studied on biomass production, lipid content, and OCFAs profile. Lipid production by yeast growing on molasses (20 g/L sucrose) and crude glycerol reached 4.63 ± 0.95 g/L of culture medium. OCFAs content represented 58% of the total fatty acids in lipids, which corresponds to ≈2.69 ± 0.03 g/L of culture medium. The fermentation was upscaled to 5 L bioreactors and fed-batch co-feeding increased OCFA accumulation in Y. lipolytica by 56% compared to batch cultures.
Collapse
|