1
|
Amundson KK, Borton MA, Wilkins MJ. Anthropogenic impacts on the terrestrial subsurface biosphere. Nat Rev Microbiol 2025; 23:147-161. [PMID: 39406896 DOI: 10.1038/s41579-024-01110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 02/19/2025]
Abstract
The terrestrial subsurface is estimated to be the largest reservoir of microbial life on Earth. However, the subsurface also harbours economic, industrial and environmental resources, on which humans heavily rely, including diverse energy sources and formations for the storage of industrial waste and carbon dioxide for climate change mitigation. As a result of this anthropogenic activity, the subsurface landscape is transformed, including the subsurface biosphere. Through the creation of new environments and the introduction of substrates that fuel microbial life, the structure and function of subsurface microbiomes shift markedly. These microbial changes often have unintended effects on overall ecosystem function and are frequently challenging to manage from the surface of the Earth. In this Review, we highlight emerging research that investigates the impacts of anthropogenic activity on the terrestrial subsurface biosphere. We explore how humans alter the constraints on microbial life in the subsurface through drilling, mining, contamination and resource extraction, along with the resulting impacts of microorganisms on resource recovery and subsurface infrastructure.
Collapse
Affiliation(s)
- Kaela K Amundson
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Bellini R, Vasile NS, Bassani I, Vizzarro A, Coti C, Barbieri D, Scapolo M, Pirri CF, Verga F, Menin B. Investigating the activity of indigenous microbial communities from Italian depleted gas reservoirs and their possible impact on underground hydrogen storage. Front Microbiol 2024; 15:1392410. [PMID: 38725680 PMCID: PMC11079786 DOI: 10.3389/fmicb.2024.1392410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
H2 produced from renewable energies will play a central role in both greenhouse gas reduction and decarbonization by 2050. Nonetheless, to improve H2 diffusion and utilization as a fuel, large storage capacity systems are needed. Underground storage of natural gas in depleted reservoirs, aquifers and salt caverns is a well-established technology. However, new challenges arise when it comes to storing hydrogen due to the occurrence and activity of indigenous microbial populations in deep geological formations. In a previous study, four Italian natural gas reservoirs were characterized both from a hydro-chemical and microbiological point of view, and predictive functional analyses were carried out with the perspective of underground hydrogen storage (UHS). In the present work, formation waters from the same reservoirs were used as inoculant during batch cultivation tests to characterize microbial activity and its effects on different gas mixtures. Results evidence a predominant acidogenic/acetogenic activity, whilst methanogenic and sulfate reducing activity were only marginal for all tested inoculants. Furthermore, the microbial activation of tested samples is strongly influenced by nutrient availability. Obtained results were fitted and screened in a computational model which would allow deep insights in the study of microbial activity in the context of UHS.
Collapse
Affiliation(s)
- Ruggero Bellini
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Nicolò Santi Vasile
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Ilaria Bassani
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Arianna Vizzarro
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | | | | | | | - Candido Fabrizio Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Francesca Verga
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Barbara Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| |
Collapse
|
3
|
Hanišáková N, Vítězová M, Vítěz T, Kushkevych I, Kotrlová E, Novák D, Lochman J, Zavada R. Microbiological insight into various underground gas storages in Vienna Basin focusing on methanogenic Archaea. Front Microbiol 2023; 14:1293506. [PMID: 38188570 PMCID: PMC10771303 DOI: 10.3389/fmicb.2023.1293506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
In recent years, there has been a growing interest in extending the potential of underground gas storage (UGS) facilities to hydrogen and carbon dioxide storage. However, this transition to hydrogen storage raises concerns regarding potential microbial reactions, which could convert hydrogen into methane. It is crucial to gain a comprehensive understanding of the microbial communities within any UGS facilities designated for hydrogen storage. In this study, underground water samples and water samples from surface technologies from 7 different UGS objects located in the Vienna Basin were studied using both molecular biology methods and cultivation methods. Results from 16S rRNA sequencing revealed that the proportion of archaea in the groundwater samples ranged from 20 to 58%, with methanogens being the predominant. Some water samples collected from surface technologies contained up to 87% of methanogens. Various species of methanogens were isolated from individual wells, including Methanobacterium sp., Methanocalculus sp., Methanolobus sp. or Methanosarcina sp. We also examined water samples for the presence of sulfate-reducing bacteria known to be involved in microbially induced corrosion and identified species of the genus Desulfovibrio in the samples. In the second part of our study, we contextualized our data by comparing it to available sequencing data from terrestrial subsurface environments worldwide. This allowed us to discern patterns and correlations between different types of underground samples based on environmental conditions. Our findings reveal presence of methanogens in all analyzed groups of underground samples, which suggests the possibility of unintended microbial hydrogen-to-methane conversion and the associated financial losses. Nevertheless, the prevalence of methanogens in our results also highlights the potential of the UGS environment, which can be effectively leveraged as a bioreactor for the conversion of hydrogen into methane, particularly in the context of Power-to-Methane technology.
Collapse
Affiliation(s)
- Nikola Hanišáková
- Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Monika Vítězová
- Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomáš Vítěz
- Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Ivan Kushkevych
- Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Eva Kotrlová
- Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - David Novák
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Roman Zavada
- Innovation Unit, NAFTA a.s., Bratislava, Slovakia
| |
Collapse
|
4
|
Addition of Conductive Materials to Support Syntrophic Microorganisms in Anaerobic Digestion. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Syntrophy and interspecies electron transfer among different microbial groups occurs in anaerobic digestion, and many papers recently reported their positive effect on biogas and methane production. In this paper, we present the results on the effect of conductive material, i.e., graphene, PAC and biochar addition in 3.5 L batch experiments, analyzing the biogas production curve. A peculiar curve pattern occurred in the presence of conductive materials. Compared to the respective controls, the addition of graphene produced a biogas surplus of 33%, PAC 20% and biochar 8%. Microbial community molecular analysis showed that syntrophic microorganisms present in the inoculum were stimulated by the conductive material addition. Graphene also appears to promote an interspecies electron transfer between Geobacter sp. and ca. Methanofastidiosum. This paper contributes to the understanding of the DIET-related microbial community dynamic in the presence of graphene and PAC, which could be exploited to optimize biogas and methane production in real-scale applications.
Collapse
|