1
|
Mercatante D, Santoni M, Nissen L, Didos S, Salvatori G, D’Ambrosio GJ, Farneti A, Chiarello E, Casciano F, Picone G, Mouchtaropoulou E, Bordoni A, Danesi F, Argiriou A, Ayfantopoulou G, Gianotti A, Rodriguez-Estrada MT. Nutritional, Chemical, and Functional Properties of Wholegrain Einkorn Pasta Through Cooking and Digestion: A Comparative Study with Wholegrain Durum Wheat Pasta. Foods 2025; 14:370. [PMID: 39941963 PMCID: PMC11817464 DOI: 10.3390/foods14030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Despite growing interest in ancient wheat varieties, the functional and nutritional properties of einkorn (Triticum monococcum) in cereal-based foods remain not fully elucidated. This study examined the chemical composition and functional properties of wholegrain einkorn pasta through cooking and simulated gastrointestinal digestion, comparing it with conventional Triticum durum wheat pasta. While sharing similar macronutrient profiles, einkorn pasta demonstrated higher retention of key compounds including phenolics, tocopherols, and phytosterols throughout cooking and in vitro digestion. Notable findings include enhanced prebiotic activity specifically targeting bifidobacteria populations and preserved antioxidant capacity despite thermal processing. These results demonstrated einkorn's potential as a functional food ingredient, suggesting its capacity to deliver enhanced nutritional benefits through its unique matrix properties. Our findings provide mechanistic insights into ancient grain functionality in modern food applications, with implications for developing nutritionally enhanced pasta products.
Collapse
Affiliation(s)
- Dario Mercatante
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Mattia Santoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Lorenzo Nissen
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
- Interdepartmental Centre of Agrifood Industry Research (CIRI Agrifood), University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Spyros Didos
- Department of Food Science and Nutrition, University of the Aegean (UOA-FNS), University Hill, 81100 Mytilene, Greece; (S.D.); (E.M.); (A.A.)
| | - Giulia Salvatori
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Gianni Jan D’Ambrosio
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Alice Farneti
- Scientific High School “Augusto Righi”, Piazza Aldo Moro 20, 47521 Cesena, Italy;
| | - Elena Chiarello
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Flavia Casciano
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Evangelia Mouchtaropoulou
- Department of Food Science and Nutrition, University of the Aegean (UOA-FNS), University Hill, 81100 Mytilene, Greece; (S.D.); (E.M.); (A.A.)
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
- Interdepartmental Centre of Agrifood Industry Research (CIRI Agrifood), University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Francesca Danesi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
- Interdepartmental Centre of Agrifood Industry Research (CIRI Agrifood), University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Anagnostis Argiriou
- Department of Food Science and Nutrition, University of the Aegean (UOA-FNS), University Hill, 81100 Mytilene, Greece; (S.D.); (E.M.); (A.A.)
| | - Georgia Ayfantopoulou
- Centre for Research and Technology Hellas, Hellenic Institute of Transport (CERTH/HIT), 6th km Charilaou, Thermi Rd., Thermi, 57001 Thessaloniki, Greece;
| | - Andrea Gianotti
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
- Interdepartmental Centre of Agrifood Industry Research (CIRI Agrifood), University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
- Interdepartmental Centre of Agrifood Industry Research (CIRI Agrifood), University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| |
Collapse
|
2
|
Jiang M, Hu Z, Huang Y, Chen XD, Wu P. Impact of wall materials and DHA sources on the release, digestion and absorption of DHA microcapsules: Advancements, challenges and future directions. Food Res Int 2024; 191:114646. [PMID: 39059932 DOI: 10.1016/j.foodres.2024.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
Docosahexaenoic acid (DHA), an essential omega-3 fatty acid, offers significant health benefits but faces challenges such as distinct odor, oxidation susceptibility, and limited intestinal permeability, hindering its broad application. Microencapsulation, widely employed, enhances DHA performance by facilitating controlled release, digestion, and absorption in the gastrointestinal tract. Despite extensive studies on DHA microcapsules and related delivery systems, understanding the mechanisms governing encapsulated DHA release, digestion, and absorption, particularly regarding the influence of wall materials and DHA sources, remains limited. This review starts with an overview of current techniques commonly applied for DHA microencapsulation. It then proceeds to outline up-to-date advances in the release, digestion and absorption of DHA microcapsules, highlighting the roles of wall materials and DHA sources. Importantly, it proposes strategies for overcoming challenges and exploiting opportunities to enhance the bioavailability of DHA microcapsules. Notably, spray drying dominates DHA microencapsulation (over 90 % usage), while complex coacervation shows promise for future applications. The combination of proteins and carbohydrates or phospholipids as wall material exhibits potential in controlling release and digestion of DHA microcapsules. The source of DHA, particularly algal oil, demonstrates higher lipid digestibility and absorptivity of free fatty acids (FFAs) than fish oil. Future advancements in DHA microcapsule development include formulation redesign (e.g., using plant proteins as wall material and algal oil as DHA source), technique optimization (such as co-microencapsulation and pre-digestion), and creation of advanced in vitro systems for assessing DHA digestion and absorption kinetics.
Collapse
Affiliation(s)
- Maoshuai Jiang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zejun Hu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Suzhou, Jiangsu 215152, China.
| | - Yixiao Huang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peng Wu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
3
|
Homroy S, Chopra R, Singh PK, Dhiman A, Chand M, Talwar B. Role of encapsulation on the bioavailability of omega-3 fatty acids. Compr Rev Food Sci Food Saf 2024; 23:e13272. [PMID: 38284597 DOI: 10.1111/1541-4337.13272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Omega-3 fatty acids (omega-3 FAs) have been widely recognized for their therapeutic advantages, including anti-inflammatory and cardioprotective properties. They have shown promise in enhancing regulatory function, promotingdevelopment and mitigating the progression of diabetes and cancer. The scientific communities, along with industries, are actively endorsing initiatives aimed at increasing the daily intake of lipids rich in omega-3 FAs. Nevertheless, incorporating polyunsaturated FAs (PUFAs) into food products poses several challenges due to their susceptibility to oxidation when exposed to oxygen, high temperatures, and moisture. This oxidative deterioration results in undesirable flavours and a loss of nutritional value. Various methods, including physical blending, interesterification, and encapsulation, have been utilized as ways to enhance the stability of edible oils rich in PUFA against oxidation. Encapsulation has emerged as a proven strategy for enhancing the oxidative stability and functional properties of omega-3 FA-rich oils. Multiple encapsulation methods have been developed to stabilize and improve the delivery of omega-3 FAs in food products. The selection of an appropriate encapsulation method depends on the desired application of the encapsulated oil. In addition, encapsulation enhances the bioavailability of omega-3 FAs by promoting increased absorption of the encapsulated form in the intestinal epithelium. This review discusses the techniques and principles of omega-3 FA-rich oil encapsulation and its role in improving stability and bioavailability. Furthermore, it also investigates the potential health benefits of these encapsulated oils. This review explores the variations in bioavailability based on encapsulation techniques and processing, offering vital insights for nutrition and product development.
Collapse
Affiliation(s)
- Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition & Food Technology, Institute of Home Economics, University of Delhi, Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
4
|
Kościelak A, Koziara Z, Maria AP, Płatek R, Bartoszek A. Microscopic Imaging to Visualize the Distribution of Dietary Nucleic Acids in Food Products of Various Origins. Foods 2023; 12:3942. [PMID: 37959061 PMCID: PMC10650480 DOI: 10.3390/foods12213942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Dietary nucleic acids (dietNAs) are being increasingly recognized as important food components with nutritional value. However, the precise dietary recommendations for dietNAs are limited, because established methods for determining the quantity and nutritional role of dietNAs are still lacking. One of the tools to narrow this gap could be microscopic imaging, as a convenient approach to visualize the abundance and distribution of dietNAs in food products. With the aid of appropriate bioinformatic elaboration, such images may in future enable the direct semiquantitative estimation of these macromolecules in food products. In the presented study, two methods of preparing microscopic sections and staining them with DNA-specific fluorochromes were used for microscopic imaging of dietNAs in food products of plant and animal origin. Procedures for preparing formalin-fixed paraffin-embedded sections and cryosections were compared in terms of their usefulness for routine food analysis. Both methods turned out equally suitable for visualizing dietNA distribution in animal and plant products. However, the use of cryosections allowed a significantly shorter analysis time and reduced the consumption of organic solvents. Both of these advantages make the cryosection method preferable while establishing a dedicated methodology for routine assessment of dietNAs in the food industry.
Collapse
Affiliation(s)
- Anna Kościelak
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland; (A.K.); (Z.K.); (A.P.M.)
| | - Zuzanna Koziara
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland; (A.K.); (Z.K.); (A.P.M.)
| | - Ana Pons Maria
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland; (A.K.); (Z.K.); (A.P.M.)
| | - Rafał Płatek
- Laboratory for Regenerative Biotechnology, Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland;
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland; (A.K.); (Z.K.); (A.P.M.)
| |
Collapse
|
5
|
Wang J, Ossemond J, Jardin J, Briard-Bion V, Henry G, Le Gouar Y, Ménard O, Lê S, Madadlou A, Dupont D, Pédrono F. Encapsulation of DHA oil with heat-denatured whey protein in Pickering emulsion improves its bioaccessibility. Food Res Int 2022; 162:112112. [DOI: 10.1016/j.foodres.2022.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
|
6
|
Lv W, Xu D. Docosahexaenoic Acid Delivery Systems, Bioavailability, Functionality, and Applications: A Review. Foods 2022; 11:2685. [PMID: 36076867 PMCID: PMC9455885 DOI: 10.3390/foods11172685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 12/19/2022] Open
Abstract
Docosahexaenoic acid (DHA), mainly found in microalgae and fish oil, is crucial for the growth and development of visual, neurological, and brain. In addition, DHA has been found to improve metabolic disorders associated with obesity and has anti-inflammatory, anti-obesity, and anti-adipogenesis effects. However, DHA applications in food are often limited due to its low water solubility, instability, and poor bioavailability. Therefore, delivery systems have been developed to enhance the remainder of DHA activity and increase DHA homeostasis and bioavailability. This review focused on the different DHA delivery systems and the in vitro and in vivo digestive characteristics. The research progress on cardiovascular diseases, diabetes, visual, neurological/brain, anti-obesity, anti-inflammatory, food applications, future trends, and the development potential of DHA delivery systems were also reviewed. DHA delivery systems could overcome the instability of DHA in gastrointestinal digestion, improve the bioavailability of DHA, and better play the role of its functionality.
Collapse
Affiliation(s)
- Wenwen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Wang J, Ossemond J, Le Gouar Y, Boissel F, Dupont D, Pédrono F. Encapsulation of Docosahexaenoic Acid Oil Substantially Improves the Oxylipin Profile of Rat Tissues. Front Nutr 2022; 8:812119. [PMID: 35118110 PMCID: PMC8805515 DOI: 10.3389/fnut.2021.812119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a major n-3 polyunsaturated fatty acid (PUFA) particularly involved in cognitive and cardiovascular functions. Due to the high unsaturation index, its dietary intake form has been considered to improve oxidation status and to favor bioaccessibility and bioavailability as well. This study aimed at investigating the effect of DHA encapsulated with natural whey protein. DHA was dietary provided as triacylglycerols to achieve 2.3% over total fatty acids. It was daily supplied to weanling rats for four weeks in omelet as food matrix, consecutively to a 6-hour fasting. First, when DHA oil was encapsulated, consumption of chow diet was enhanced leading to promote animal growth. Second, the brain exhibited a high accretion of 22.8% DHA, which was not improved by dietary supplementation of DHA. Encapsulation of DHA oil did not greatly affect the fatty acid proportions in tissues, but remarkably modified the profile of oxidized metabolites of fatty acids in plasma, heart, and even brain. Specific oxylipins derived from DHA were upgraded, such as Protectin Dx in heart and 14-HDoHE in brain, whereas those generated from n-6 PUFAs were mainly mitigated. This effect did not result from oxylipins measured in DHA oil since DHA and EPA derivatives were undetected after food processing. Collectively, these data suggested that dietary encapsulation of DHA oil triggered a more efficient absorption of DHA, the metabolism of which was enhanced more than its own accretion in our experimental conditions. Incorporating DHA oil in functional food may finally improve the global health status by generating precursors of protectins and maresins.
Collapse
Affiliation(s)
- Jun Wang
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Jordane Ossemond
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yann Le Gouar
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Françoise Boissel
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Didier Dupont
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Frédérique Pédrono
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
- *Correspondence: Frédérique Pédrono
| |
Collapse
|
8
|
Nutrigenomics of Dietary Lipids. Antioxidants (Basel) 2021; 10:antiox10070994. [PMID: 34206632 PMCID: PMC8300813 DOI: 10.3390/antiox10070994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary lipids have a major role in nutrition, not only for their fuel value, but also as essential and bioactive nutrients. This narrative review aims to describe the current evidence on nutrigenomic effects of dietary lipids. Firstly, the different chemical and biological properties of fatty acids contained both in plant- and animal-based food are illustrated. A description of lipid bioavailability, bioaccessibility, and lipotoxicity is provided, together with an overview of the modulatory role of lipids as pro- or anti-inflammatory agents. Current findings concerning the metabolic impact of lipids on gene expression, epigenome, and gut microbiome in animal and human studies are summarized. Finally, the effect of the individual’s genetic make-up on lipid metabolism is described. The main goal is to provide an overview about the interaction between dietary lipids and the genome, by identifying and discussing recent scientific evidence, recognizing strengths and weaknesses, to address future investigations and fill the gaps in the current knowledge on metabolic impact of dietary fats on health.
Collapse
|