1
|
Castaldo L, Lombardi S, Izzo L, Ritieni A. Exploring the Chemical Composition of Female Zucchini Flowers for Their Possible Use as Nutraceutical Ingredient. Antioxidants (Basel) 2023; 12:2108. [PMID: 38136227 PMCID: PMC10740746 DOI: 10.3390/antiox12122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The zucchini (Cucurbita pepo L.) plant is well known for its fruits; however, its edible flowers appear to contain several active molecules, including polyphenols, which display poor bioaccessibility after gastrointestinal digestion (GiD). This study explores the bioaccessibility of polyphenols and antioxidant capacity within zucchini flower extracts during simulated GiD. Two nutraceutical formulations, non-acid-resistant (NAcR) and acid-resistant (AcR) capsules containing an aqueous extract of zucchini flowers, were employed in this investigation. Additionally, high-resolution mass spectrometry (Q-Orbitrap HRMS) was utilized for a comprehensive analysis of their polyphenolic constituents. Predominantly, rutin and isorhamnetin-3-rutinoside were the most prevalent compounds detected in the samples (514.62 and 318.59 mg/kg, respectively). Following in vitro GiD, the extract encapsulated in AcR capsules exhibited enhanced bioaccessibility during both the duodenal (189.2 and 162.5 mg GAE/100 g, respectively) and colonic stages (477.4 and 344.7 mg GAE/100 g, respectively) when compared with the extract encapsulated in NAcR capsules. This suggests that gastric acidity adversely impacted the release of polyphenols from NAcR capsules. In conclusion, the aqueous zucchini flower extract emerges as a promising and readily accessible source of dietary polyphenols. Moreover, the utilization of AcR capsules presents a potential nutraceutical formulation strategy to improve polyphenol bioaccessibility, enhancing its applicability in promoting health and well-being.
Collapse
Affiliation(s)
| | | | - Luana Izzo
- Food Laboratory, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (S.L.); (A.R.)
| | | |
Collapse
|
2
|
Temiño V, Gerardi G, Cavia-Saiz M, Diaz-Morales N, Muñiz P, Salazar G. Bioaccessibility and Genoprotective Effect of Melanoidins Obtained from Common and Soft Bread Crusts: Relationship between Melanoidins and Their Bioactivity. Foods 2023; 12:3193. [PMID: 37685126 PMCID: PMC10487202 DOI: 10.3390/foods12173193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Bread crust constitutes an important by-product of the bakery industry, and its utilization for the isolation of melanoidins to be used as a functional ingredient can enhance its added value and contribute to health. The aim of this study was to evaluate the bioaccessibility, bioactivity, and genoprotective effect of melanoidins derived from bread crust. Bioaccessibility was assessed in gastric, intestinal digestion, and colonic fermentation fractions. The results revealed a relationship between bioaccessible melanoidins and their type (common or soft bread). No cytotoxicity effects were observed for bioaccessible fractions, as assessed by MTT and RTA methods, and they did not affect the distribution of E-cadherin in Caco-2 cells, confirming their ability to maintain membrane integrity. Furthermore, our study demonstrated that the gastrointestinal and colonic fermentation fractions successfully transported across the intestinal barrier, without affecting cell permeability, and showed antioxidant activity on the basolateral side of the cell monolayer. Remarkably, both fractions displayed a significant genoprotective effect in Caco-2 cells. Our findings provide crucial insights into the relationship between the melanoidins and their bioactivity and genoprotective effect. These results demonstrated the potential of bioaccessible melanoidins as valuable bioactive compounds for the development of functional foods, without showing toxic effects on gastrointestinal cells.
Collapse
Affiliation(s)
| | | | | | | | - Pilar Muñiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001 Burgos, Spain; (V.T.); (G.G.); (M.C.-S.); (G.S.)
| | | |
Collapse
|
3
|
Vitiello A, Izzo L, Castaldo L, d'Angelo I, Ungaro F, Miro A, Ritieni A, Quaglia F. The Questionable Quality Profile of Food Supplements: The Case of Red Yeast Rice Marketed Products. Foods 2023; 12:foods12112142. [PMID: 37297387 DOI: 10.3390/foods12112142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Food supplements (FS) containing red yeast rice (RYR) are largely employed to reduce lipid levels in the blood. The main ingredient responsible for biological activity is monacolin K (MoK), a natural compound with the same chemical structure as lovastatin. Concentrated sources of substances with a nutritional or physiological effect are marketed in "dose" form as food supplements (FS). The quality profile of the "dosage form" of FS is not defined in Europe, whereas some quality criteria are provided in the United States. Here, we evaluate the quality profile of FS containing RYR marketed in Italy as tablets or capsules running two tests reported in The European Pharmacopoeia 11 Ed. and very close to those reported in the USP. The results highlighted variations in dosage form uniformity (mass and MoK content) compliant with The European Pharmacopoeia 11 Ed. specifications, whereas the time needed for disintegrating tablets was longer for 44% of the tested samples. The bioaccessibility of MoK was also investigated to obtain valuable data on the biological behaviour of the tested FS. In addition, a method for citrinin (CIT) determination was optimized and applied to real samples. None of the analyzed samples demonstrated CIT contamination (LOQ set at 6.25 ng/mL). Considering the widespread use of FS, our data suggest that greater attention should be paid by fabricants and regulatory authorities to ensure the quality profile and the safe consumption of marketed products.
Collapse
Affiliation(s)
- Antonella Vitiello
- Drug Delivery Laboratory, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Luana Izzo
- FoodLab Laboratory, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Luigi Castaldo
- FoodLab Laboratory, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Ivana d'Angelo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Francesca Ungaro
- Drug Delivery Laboratory, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Agnese Miro
- Drug Delivery Laboratory, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Alberto Ritieni
- FoodLab Laboratory, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
4
|
Grzelczyk J, Szwajgier D, Baranowska-Wójcik E, Pérez-Sánchez H, Carmena-Bargueño M, Sosnowska B, Budryn G. Effect of Inhibiting Butyrylcholinesterase Activity Using Fractionated Coffee Extracts Digested In Vitro in Gastrointestinal Tract: Docking Simulation and Calorimetric and Studies. Nutrients 2023; 15:nu15102366. [PMID: 37242249 DOI: 10.3390/nu15102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Butyrylcholinesterase (BChE) is a major enzyme from the alpha-glycoprotein family that catalyzes the hydrolysis of neurotransmitter acetylcholine (ACh), lowering the concentration of ACh in the nervous system, which could cause aggravation of Alzheimer's disease (AD). In select pathological conditions, it is beneficial to reduce the activity of this enzyme. The aim of this study was to evaluate the degree of BChE inhibition by coffee extracts fractionated into mono- and diesters of caffeic acid/caffeine, digested in vitro in the gastrointestinal tract. The bioactive compounds from coffee showed high affinity for BchE, -30.23--15.28 kJ/mol, and was the highest for the caffeine fraction from the green Arabica extract. The isolated fractions were highly effective in inhibiting BChE activity at all in vitro digestion phases. It has been shown that the fractionation of coffee extracts could be potentially used to obtain high prophylactic or even therapeutic effectiveness against AD.
Collapse
Affiliation(s)
- Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Bożena Sosnowska
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| |
Collapse
|
5
|
Li M, Lu P, Wu H, de Souza TSP, Suleria HAR. In vitro digestion and colonic fermentation of phenolic compounds and their bioaccessibility from raw and roasted nut kernels. Food Funct 2023; 14:2727-2739. [PMID: 36852611 DOI: 10.1039/d2fo03392e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Roasting and digestion affect nut kernel phenolic compounds' bioaccessibility and bioactivity. In this study, three types of raw and commercially roasted nut kernels (almonds, cashews, and walnuts) were treated by in vitro digestion and colonic fermentation. The objective was to analyze the effect of roasting on their phenolic content, associated antioxidant potential, bioaccessibility, and short chain fatty acid (SCFA) synthesis altering. Among these, raw and roasted walnuts performed best, with significantly higher total phenolic content (TPC), total flavonoid content (TFC), free radical scavenging (2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay) values, and ferric reducing antioxidant power (FRAP) values after completing gastrointestinal digestion. With the exception of cashews, roasting had no significant effect on antioxidant capacity during digestion from oral to small intestinal phase. Almonds showed the highest DPPH values after 16-hour colonic fermentation, reaching above 7.60 mg TE per g. Roasting had a positive effect on the free radical savagery capacity of walnuts within 16-24 hours of fecal fermentation. Significant differences were found in the bioaccessibility of individual compounds in raw and roasted nuts. As for almond and walnut, roasting increases the release and breakdown of phenolic compounds during colonic fermentation and have a positive impact on the bioaccessibility of specific phenolic compounds. The colonic bioaccessibility of most phenolic compounds was the highest. Due to heat polysaccharide breakdown, the total SCFAs produced were limited up to 0.03 mM. Raw almonds produced the most SCFAs at 16-hour fermentation and illustrated more benefits to gut health.
Collapse
Affiliation(s)
- Minhao Li
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Peiyao Lu
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville 3010, VIC, Australia.
- Wuxi Food Safety Inspection and Test Center, 35 South Changjiang Road, Wuxi, Jiangsu Province, 214000, China
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Thaiza S P de Souza
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
6
|
Machado M, Ferreira H, Oliveira MBPP, Alves RC. Coffee by-products: An underexplored source of prebiotic ingredients. Crit Rev Food Sci Nutr 2023; 64:7181-7200. [PMID: 36847145 DOI: 10.1080/10408398.2023.2181761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Consumers' demand for foods with high nutritional value and health benefits has fueled the development of prebiotic foods. In coffee industry, cherries transformation into roasted beans generates a large amount of waste/by-products (pulp/husks, mucilage, parchment, defective beans, silverskin and spent coffee grounds) that usually end up in landfills. The possibility to use coffee by-products as relevant sources of prebiotic ingredients is herein ascertained. As a prelude to this discussion, an overview of pertinent literature on prebiotic action was conducted, including on biotransformation of prebiotics, gut microbiota, and metabolites. Existing research indicates that coffee by-products contain significant levels of dietary fiber and other components that can improve gut health by stimulating beneficial bacteria in the colon, making them excellent candidates for prebiotic ingredients. Oligosaccharides from coffee by-products have lower digestibility than inulin and can be fermented by gut microbiota into functional metabolites, such as short-chain fatty acids. Depending on the concentration, melanoidins and chlorogenic acids may also have prebiotic action. Nevertheless, there is still a lack of in vivo studies to validate such findings in vitro. This review shows how coffee by-products can be interesting for the development of functional foods, contributing to sustainability, circular economy, food security, and health.
Collapse
Affiliation(s)
- Marlene Machado
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Ferreira
- REQUIMTE/UCIBIO, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Effect of Different Coffee Brews on Tryptophan Metabolite-Induced Cytotoxicity in HT-29 Human Colon Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11122458. [PMID: 36552667 PMCID: PMC9774627 DOI: 10.3390/antiox11122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Coffee consumption positively influences colon health. Conversely, high levels of tryptophan metabolites such as skatole released from intestinal putrefactive fermentation in the presence of excessive dietary animal protein intake, and gut microbiota alterations, may have several adverse effects, including the development of colorectal cancer. Therefore, this study aimed to elucidate the potential protective effects of coffee in the presence of different skatole levels. The results showed that skatole exposure induced reduced cell viability and oxidative stress in the HT-29 human colon cancer cell line. However, co-treatment of cells with skatole and coffee samples was able to reduce ROS production (up to 45% for espresso) compared to cells not treated with coffee. Real-time PCR analysis highlighted that treating HT-29 cells with skatole increased the levels of inflammatory cytokines and chemokines TNF-α, IL-1β, IL-8, and IL12, whereas exposure to coffee extracts in cells that were pretreated with skatole showed anti-inflammatory effects with decreased levels of these cytokines. These findings demonstrate that coffee may counteract the adverse effects of putrefactive compounds by modulating oxidative stress and exerting anti-inflammatory activity in colonocytes, thus suggesting that coffee intake could improve health conditions in the presence of altered intestinal microbiota metabolism.
Collapse
|
8
|
Analysis of Polyphenolic Compounds in Water-Based Extracts of Vicia faba L.: A Potential Innovative Source of Nutraceutical Ingredients. Antioxidants (Basel) 2022; 11:antiox11122453. [PMID: 36552661 PMCID: PMC9774889 DOI: 10.3390/antiox11122453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The water-based extract of broad bean hulls contains several bioactive molecules, including polyphenols well-known to exert antioxidant activity, which could justify its use in nutraceutical formulations. Hence, the current investigation aimed to establish the polyphenolic profile of water-based extracts from broad bean hulls through UHPLC-Q-Orbitrap HRMS analysis. The findings highlighted that p-coumaric acid, chlorogenic acid, and epicatechin were the most common compounds found in the tested extracts, being quantified at a mean concentration of 42.1, 32.6, and 31.2 mg/100 g, respectively. Moreover, broad bean hull extracts were encapsulated into a nutraceutical formulation, after which the antioxidant properties and the bioaccessibility of phenolic compounds during the simulated gastrointestinal (GI) process were investigated and compared with the digested non-encapsulated extract. The data highlighted that following the GI process, the capsules were able to preserve active compounds from the adverse effects of digestion, resulting in a greater antioxidant capacity and polyphenol bioaccessibility in the duodenal and colonic phases, compared with the non-encapsulated extract. Our results showed that the water extract from broad bean hulls may be considered a valuable source of natural polyphenolic compounds; in addition, the use of a gastric-resistant capsule could be a suitable alternative to transport these bioactive compounds to the target tissues.
Collapse
|
9
|
Wu H, Liu Z, Lu P, Barrow C, Dunshea FR, Suleria HAR. Bioaccessibility and bioactivities of phenolic compounds from roasted coffee beans during in vitro digestion and colonic fermentation. Food Chem 2022; 386:132794. [PMID: 35349898 DOI: 10.1016/j.foodchem.2022.132794] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/28/2022]
Abstract
Bioaccessibility and bioactivity of phenolic compounds in coffee beans relate to roasting and digestion process. This study aimed to estimate phenolic content, antioxidant potential, bioaccessibility, and changes in short chain fatty acids (SCFAs) production during in vitro digestion and colonic fermentation of commercial roasted (light, medium and dark) coffee beans. There was no significant difference found among all three different roasting levels. TPC and DPPH were enhanced 15 mg GAE/g and 60 mg TE/g during gastrointestinal digestion, respectively. For colonic fermentation, the highest TPC and FRAP of all coffee beans was found at 2 and 4 h, respectively. The gastric bioaccessibility of most of the phenolic compounds were relatively higher due to thermal phenolic degradation. Total SCFAs production was only up to 0.02 mM because of thermal polysaccharide decomposition. Light roasted beans exhibited relatively higher phenolic bioaccessibility, antioxidant activities and SCFAs production, which would be more beneficial to gut health.
Collapse
Affiliation(s)
- Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Ziyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Peiyao Lu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Colin Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia.
| |
Collapse
|
10
|
Polese B, Izzo L, Mancino N, Pesce M, Rurgo S, Tricarico MC, Lombardi S, De Conno B, Sarnelli G, Ritieni A. Effect of Dewaxed Coffee on Gastroesophageal Symptoms in Patients with GERD: A Randomized Pilot Study. Nutrients 2022; 14:nu14122510. [PMID: 35745239 PMCID: PMC9231412 DOI: 10.3390/nu14122510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Gastroesophageal Reflux Disease (GERD) is multifactorial pathogenesis characterized by the abnormal reflux of stomach contents into the esophagus. Symptoms are worse after the ingestion of certain foods, such as coffee. Hence, a randomized pilot study conducted on 40 Italian subjects was assessed to verify the effect of standard (SC) and dewaxed coffee (DC) consumption on gastroesophageal reflux symptoms and quality of life in patients with gastrointestinal diseases. The assessment of patient diaries highlighted a significant percentage reduction of symptoms frequency when consuming DC and a significant increase in both heartburn-free and regurgitation-free days. Consequentially, patients had a significant increase of antacid-free days during the DC assumption. Moreover, the polyphenolic profile of coffee pods was ascertained through UHPLC-Q-Orbitrap HRMS analysis. Chlorogenic acids (CGAs) were the most abundant investigated compounds with a concentration level ranging between 7.316 (DC) and 6.721 mg/g (SC). Apart from CGAs, caffeine was quantified at a concentration level of 5.691 mg/g and 11.091 for DC and SC, respectively. While still preliminary, data obtained from the present pilot study provide promising evidence for the efficacy of DC consumption in patients with GERD. Therefore, this treatment might represent a feasible way to make coffee more digestible and better tolerated.
Collapse
Affiliation(s)
- Barbara Polese
- Digestive and Nutritional Pathophysiology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (B.P.); (N.M.); (M.P.); (S.R.); (B.D.C.); (G.S.)
| | - Luana Izzo
- Food Lab, Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (S.L.); (A.R.)
- Correspondence: ; Tel.: +39-081-678116
| | - Nicola Mancino
- Digestive and Nutritional Pathophysiology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (B.P.); (N.M.); (M.P.); (S.R.); (B.D.C.); (G.S.)
| | - Marcella Pesce
- Digestive and Nutritional Pathophysiology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (B.P.); (N.M.); (M.P.); (S.R.); (B.D.C.); (G.S.)
| | - Sara Rurgo
- Digestive and Nutritional Pathophysiology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (B.P.); (N.M.); (M.P.); (S.R.); (B.D.C.); (G.S.)
| | | | - Sonia Lombardi
- Food Lab, Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (S.L.); (A.R.)
| | - Barbara De Conno
- Digestive and Nutritional Pathophysiology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (B.P.); (N.M.); (M.P.); (S.R.); (B.D.C.); (G.S.)
| | - Giovanni Sarnelli
- Digestive and Nutritional Pathophysiology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (B.P.); (N.M.); (M.P.); (S.R.); (B.D.C.); (G.S.)
- United Nations Educational, Scientific and Cultural Organization Chair on Health Education and Sustainable Development, University of Naples “Federico II”, 80131 Naples, Italy
| | - Alberto Ritieni
- Food Lab, Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (S.L.); (A.R.)
- United Nations Educational, Scientific and Cultural Organization Chair on Health Education and Sustainable Development, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
11
|
Rao H, Xue F, Ma S, Zhao M, Zhao D, Hao J. Contribution of slightly acidic electrolytic water (
SAEW
) to food safety, nutrients enrichment and allergenicity reduction of peanut sprouts. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huan Rao
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
- Tongfu Group Co., Ltd Wuhu Anhui PR China
| | - Feng Xue
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
| | - Shuhong Ma
- Hebei Tongfu Health Industry Co., Ltd Shijiazhuang Hebei PR China
| | - Meng Zhao
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
| | - Dandan Zhao
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
| | - Jianxiong Hao
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
| |
Collapse
|
12
|
OUP accepted manuscript. Carcinogenesis 2022; 43:203-216. [DOI: 10.1093/carcin/bgac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 11/13/2022] Open
|
13
|
Castaldo L, Izzo L, Gaspari A, Lombardi S, Rodríguez-Carrasco Y, Narváez A, Grosso M, Ritieni A. Chemical Composition of Green Pea ( Pisum sativum L.) Pods Extracts and Their Potential Exploitation as Ingredients in Nutraceutical Formulations. Antioxidants (Basel) 2021; 11:105. [PMID: 35052609 PMCID: PMC8772770 DOI: 10.3390/antiox11010105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Agro-industrial wastes contain a large number of important active compounds which can justify their use as innovative ingredients in nutraceutical products. This study aimed to provide a complete analysis of active molecules, namely (poly)phenols in pea pods water-based extracts, through a UHPLC-Q-Orbitrap HRMS methodology. Data showed that 5-caffeoylquinic acid, epicatechin, and hesperidin were the most relevant (poly)phenols found in the assayed extracts, with a mean value of 59.87, 29.46, and 19.94 mg/100 g, respectively. Furthermore, changes in antioxidant capacity and bioaccessibility of total phenolic compounds (TPC) after the simulated gastrointestinal (GI) process were performed using spectrophotometric assays (FRAP, DPPH, ABTS, and TPC by Folin-Ciocalteu). The acid-resistant capsules (ARC) and the non-acid resistant capsules (NARC) containing the pea pod extract underwent simulated GI digestion. The results suggested that the ARC formulations were able to preserve the active compounds along the simulated GI process, highlighting a higher TPC value and antioxidant capacity than the NARC formulations and the not-encapsulated extracts. Hence, the pea pods water-based extracts could be utilized as a potential alternative source of active compounds, and the use of ARC could represent a suitable nutraceutical formulation to vehiculate the active compounds, protecting the chemical and bioactive properties of (poly)phenols.
Collapse
Affiliation(s)
- Luigi Castaldo
- Department of Pharmacy, University of Naples “Federico II”, 49 Domenico Montesano Street, 80131 Naples, Italy; (A.G.); (S.L.); (A.N.)
| | - Luana Izzo
- Department of Pharmacy, University of Naples “Federico II”, 49 Domenico Montesano Street, 80131 Naples, Italy; (A.G.); (S.L.); (A.N.)
| | - Anna Gaspari
- Department of Pharmacy, University of Naples “Federico II”, 49 Domenico Montesano Street, 80131 Naples, Italy; (A.G.); (S.L.); (A.N.)
| | - Sonia Lombardi
- Department of Pharmacy, University of Naples “Federico II”, 49 Domenico Montesano Street, 80131 Naples, Italy; (A.G.); (S.L.); (A.N.)
| | - Yelko Rodríguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Alfonso Narváez
- Department of Pharmacy, University of Naples “Federico II”, 49 Domenico Montesano Street, 80131 Naples, Italy; (A.G.); (S.L.); (A.N.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples “Federico II”, 5 Sergio Pansini Street, 80131 Naples, Italy;
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80141 Napoli, Italy;
| |
Collapse
|
14
|
Antioxidant and Anti-Inflammatory Activity of Coffee Brew Evaluated after Simulated Gastrointestinal Digestion. Nutrients 2021; 13:nu13124368. [PMID: 34959920 PMCID: PMC8705407 DOI: 10.3390/nu13124368] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Coffee contains human health-related molecules, namely polyphenols that possess a wide range of pharmacological functions, and their intake is associated with reduced colon cancer risk. This study aimed to assess the changes in the anti-inflammatory and antioxidant activity of coffee after simulated gastrointestinal digestion. The evaluation of intracellular reactive oxygen species (ROS) levels in the HT-29 human colon cancer cell line and three in vitro spectrophotometric assays were performed to determine the antioxidant activity of the samples. Characterization of coffee composition was also assessed through a Q-Orbitrap high-resolution mass spectrometry analysis. The results highlighted that the levels of polyphenols in the digested coffee brews were higher than those of the non-digested ones. All assayed samples decreased the levels of intracellular ROS when compared to untreated cells, while digested coffee samples exhibited higher antioxidant capacity and total phenolic content than not-digested coffee samples. Digested coffee samples showed a higher reduction in interleukin-6 levels than the not-digested samples in lipopolysaccharide-stimulated HT-29 cells treated for 48 h and fewer cytotoxic effects in the MTT assay. Overall, our findings suggest that coffee may exert antioxidant and anti-inflammatory properties, and the digestion process may be able to release compounds with higher bioactivity.
Collapse
|
15
|
Iriondo-DeHond A, Rodríguez Casas A, del Castillo MD. Interest of Coffee Melanoidins as Sustainable Healthier Food Ingredients. Front Nutr 2021; 8:730343. [PMID: 34712686 PMCID: PMC8545818 DOI: 10.3389/fnut.2021.730343] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Coffee melanoidins are generated by the Maillard reaction during the thermal processes occurring in the journey of coffee from the plant to the cup (during drying and roasting). Melanoidins, the brown pigments formed as the end products of this reaction, have been reported in cascara, silverskin, spent coffee grounds, and coffee brew. The latter is one of the main natural sources of melanoidins of the daily diet worldwide. However, their presence in coffee by-products has been recently described. These complex macromolecules possess multiple health-promoting properties, such as antioxidant, anti-inflammatory, dietary fiber effect, and prebiotic capacity, which make them very interesting from a nutritional point of view. In addition, they have a great impact on the sensory profile of foods and their acceptance by the consumers. The present study is a descriptive, narrative, mini-review about the nature, structure, digestibility, properties (sensory, nutritional, and health-promoting), safety and regulatory status of melanoidins from the coffee brew and its by-products with a special emphasis on the latter.
Collapse
Affiliation(s)
| | | | - Maria Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, Madrid, Spain
| |
Collapse
|
16
|
In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Spent Coffee Grounds-Enriched Cookies. Foods 2021; 10:foods10081837. [PMID: 34441614 PMCID: PMC8391337 DOI: 10.3390/foods10081837] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022] Open
Abstract
Spent coffee ground (SCG) is a significant by-product generated by the coffee industry. It is considered a great source of bioactive molecules well-recognized for exerting biological properties. This study aimed to implement SCG in a baked foods, such as cookies (SCGc), to increase their bioactive potential. A comprehensive study of the polyphenolic fraction of the SCG and SCGc using a high-resolution mass spectrometry analysis was performed. Moreover, the polyphenol bioaccessibility and change in antioxidant activity during simulated gastrointestinal digestion (GiD) were assessed. Data showed that SCGc provided 780 mg of melanoidins, 16.2 mg of chlorogenic acid (CGA), 6.5 mg of caffeine, and 0.08 mg of phenolic acids per 100 g of sample. Moreover, the 5-caffeoylquinic acid was the most relevant CGA found in SCG (116.4 mg/100 g) and SCGc (8.2 mg/100 g) samples. The antioxidant activity evaluated through three spectrophotometric tests, and the total phenolic compounds of SCGc samples exhibited significantly higher values than the control samples. Furthermore, during simulated GiD, the highest bioaccessibility of SCGc polyphenols was observed after the colonic stage, suggesting their potential advantages for human health. Therefore, SCG with high content in bioactive molecules could represent an innovative ingredient intended to fortify baked food formulations.
Collapse
|
17
|
Castaldo L, Izzo L, De Pascale S, Narváez A, Rodriguez-Carrasco Y, Ritieni A. Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Nutraceutical Fennel Waste Extract. Molecules 2021; 26:1968. [PMID: 33807371 PMCID: PMC8037122 DOI: 10.3390/molecules26071968] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Fennel (Foeniculum vulgare Mill.) waste contains a broad range of bioactive molecules, including polyphenols, which have poor bioaccessibility during gastrointestinal digestion. This work aimed to investigate the bioaccessibility of total phenolic compounds and the antioxidant capacity during simulated gastrointestinal digestion using two nutraceutical formulations based on non-acid-resistant (NAR) and acid-resistant (AR) capsules containing aqueous-based extracts from fennel waste. Moreover, to obtain a comprehensive investigation of the polyphenolic constituents of the fennel waste extract, a high-resolution mass spectrometry (Q-Orbitrap) analysis was performed. Notably, chlorogenic acids, such as 4-caffeoylquinic acid and 3,4-dicaffeoylquinic acid, were the most detected compounds found in assayed samples (1.949 and 0.490 mg/g, respectively). After in vitro gastrointestinal digestion, the extract contained in AR capsules displayed higher bioaccessibility in both the duodenal and colonic stages (1.96 and 5.19 mg GAE/g, respectively) than NAR capsules (1.72 and 3.50 mg GAE/g, respectively), suggesting that the acidic gastric conditions negatively affected the polyphenol compounds released from the NAR capsules. Therefore, the aqueous extract of fennel waste could be proposed as an innovative and easily available source of dietary polyphenols. Furthermore, the use of an AR capsule could improve the polyphenol bioaccessibility and can be proposed as a nutraceutical formulation.
Collapse
Affiliation(s)
- Luigi Castaldo
- Department of Pharmacy, University of Naples “Federico II”, 49 Domenico Montesano Street, 80131 Naples, Italy;
| | - Luana Izzo
- Department of Pharmacy, University of Naples “Federico II”, 49 Domenico Montesano Street, 80131 Naples, Italy;
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Alfonso Narváez
- Department of Pharmacy, University of Naples “Federico II”, 49 Domenico Montesano Street, 80131 Naples, Italy;
| | - Yelko Rodriguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Valéncia, Spain;
| | - Alberto Ritieni
- Staff of UNESCO Chair on Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy;
| |
Collapse
|