1
|
Ribeiro DM, Sacarrão-Birrento L, Leclercq CC, Charton SAB, Costa MM, Carvalho DFP, Sergeant K, Cocco E, Renaut J, Freire JPB, Prates JAM, de Almeida AM. The effect of high-level dietary Laminaria digitata on the muscle proteome and metabolome of weaned piglets. Res Vet Sci 2025; 189:105646. [PMID: 40199047 DOI: 10.1016/j.rvsc.2025.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/22/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
The brown seaweed Laminaria digitata, known for its prebiotic qualities, and alginate lyase supplementation, may improve the growth and development of piglets during the critical post-weaning phase. The purpose of this study was to ascertain the effects of 10 % L. digitata and 0.01 % alginate lyase on the proteome and metabolome of the longissimus lumborum muscle in weaned piglets. Findings suggest that the enzyme supplement has a marginal effect on muscle proteome compared to the seaweed diet alone when compared to the control. L. digitata increased the prevalence of proteins related to muscle contraction and structure (such as ACTBL2), while it decreased the presence of glycolytic proteins (like GPI and ALDOC). It also increased the abundance of proteins related to the negative regulation of insulin receptor pathways, such as RABGAP1 and TSC2. Conversely, alginate lyase increased the abundance of proteins associated with fatty acid oxidation (ALOXE3) and calcium balance (WFS1), reflecting the impacts of dietary n-3 polyunsaturated fatty acids and lower calcium in the diet. As for the muscle metabolome, it remained mostly unchanged by dietary treatments, except for mannitol and threonine, which were enriched as a consequence of seaweed inclusion.
Collapse
Affiliation(s)
- David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Laura Sacarrão-Birrento
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Céline C Leclercq
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Sophie A B Charton
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Mónica M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Portugal
| | - Daniela F P Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Kjell Sergeant
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Emmanuelle Cocco
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Jenny Renaut
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - João P B Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José A M Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Portugal.
| | - André M de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
2
|
Liu Q, Yu X, Jia F, Wen R, Sun C, Yu Q. Comprehensive analyses of meat quality and metabolome alterations with aging under different aging methods in beef. Food Chem 2025; 472:142936. [PMID: 39827567 DOI: 10.1016/j.foodchem.2025.142936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The impacts of various aging techniques on meat quality and metabolism alterations over time were investigated. Meat tenderness improved with aging, whereas prolonged aging negatively impacted color and oxidative stability. Dry-aging (DA) group exhibited significantly higher (P < 0.05) weight loss, lipid oxidation, and carbonyl contents, along with significantly lower (P < 0.05) centrifugal loss, cooking loss, a* value, and sulfhydryl content compared to wet-aging (WA) group. Substantial amounts of small peptides, amino acids, and amino acid derivatives were detected in the 28 d aged samples. Higher abundances of benzenoids, lipids and lipid-like molecules, amino acids and their derivatives, and alkyl phosphates were found in the WA group, while dialkyl ethers, fatty acids, fatty acid metabolites, and hydroxy acids showed higher intensities in the DA and dry-aging in bag groups. These findings provide comprehensive metabolome information and their underlying relation with meat quality changes during aging under different aging methods.
Collapse
Affiliation(s)
- Qianqian Liu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Xiaojie Yu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Fei Jia
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, Shandong Province, China
| | - Rongxin Wen
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Chengfeng Sun
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China.
| | - Qianqian Yu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China.
| |
Collapse
|
3
|
Zhang K, Hao R, Wang S, Zhang Z, Li D, Li X, Zhao B, Zhang S, Zhao Y, Chen X. Correlation of lipid hydrolysis, oxidation, and molecular transformation with volatile compound revolution in pork during postmortem wet-aging process. Food Chem 2025; 470:142656. [PMID: 39733610 DOI: 10.1016/j.foodchem.2024.142656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Lipid hydrolysis and oxidation properties, lipid metabolites, and volatile flavors were investigated to elucidate the wet-aging process (1 h to 10 d) on lipid molecule transformation and volatile flavor evolution in pork. Phospholipase A2 (PLA2) activity increased at 12 h, with lipoxygenase (LOX) increasing from 1 h to 7 d (P < 0.05). A total of 546 differential lipids from 997 lipids and 19 aroma-active compounds out of 43 volatiles were identified, with most fatty aldehydes reaching the highest at 10 d. Acyl carnitine (18:2) and hexadecanal are potential markers to predict the wet-aging progress of pork. Correlation analysis indicated that phospholipid molecule hydrolysis by PLA2 and lipid enzymatic oxidation mediated by LOX rather than reactive oxygen species contributed to volatile aldehyde evolution, while phosphatidylcholine (16:2e/22:6) may be the key lipid molecule. These results offer insights into the lipid transformation and aroma evolution in pork during the wet-aging process.
Collapse
Affiliation(s)
- Kaihua Zhang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, PR China
| | - Rui Hao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, PR China; Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Shouwei Wang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, PR China.
| | - Zheqi Zhang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, PR China
| | - Dan Li
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, PR China
| | - Xiaoman Li
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, PR China
| | - Bing Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, PR China
| | - Shunliang Zhang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, PR China
| | - Yan Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, PR China
| | - Xiangning Chen
- Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Beijing University of Agriculture, Beijing 102206, PR China
| |
Collapse
|
4
|
Choi M, Kim HJ, Ismail A, Kim HJ, Hong H, Kim G, Jo C. Combination model for freshness prediction of pork using VIS/NIR hyperspectral imaging with chemometrics. Anim Biosci 2025; 38:142-156. [PMID: 39210811 PMCID: PMC11725733 DOI: 10.5713/ab.24.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE This study aimed to develop an enhanced model for predicting pork freshness by integrating hyperspectral imaging (HSI) and chemometric analysis. METHODS A total of 30 Longissimus thoracis samples from three sows were stored under vacuum conditions at 4°C±2°C for 27 days to acquire data. The freshness prediction model for pork loin employed partial least squares regression (PLSR) with Monte Carlo data augmentation. Total bacterial count (TBC) and volatile basic nitrogen (VBN), which exhibited increases correlating with metabolite changes during storage, were designated as freshness indicators. Metabolic contents of the sample were quantified using nuclear magnetic resonance. RESULTS A total of 64 metabolites were identified, with 34 and 35 showing high correlations with TBC and VBN, respectively. Lysine and malate for TBC (R2 = 0.886) and methionine and niacinamide for VBN (R2 = 0.909) were identified as the main metabolites in each indicator by Model 1. Model 2 predicted main metabolites using HSI spectral data. Model 3, which predicted freshness indicators with HSI spectral data, demonstrated high prediction coefficients; TBC R2p = 0.7220 and VBN R2p = 0.8392. Furthermore, the combination model (Model 4), utilizing HSI spectral data and predicted metabolites from Model 2 to predict freshness indicators, improved the prediction coefficients compared to Model 3; TBC R2p = 0.7583 and VBN R2p = 0.8441. CONCLUSION Combining HSI spectral data with metabolites correlated to the meat freshness may elucidate why certain HSI spectra indicate meat freshness and prove to be more effective in predicting the freshness state of pork loin compared to using only HSI spectral data.
Collapse
Affiliation(s)
- Minwoo Choi
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826,
Korea
| | - Hye-Jin Kim
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826,
Korea
| | - Azfar Ismail
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826,
Korea
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Selangor 43400,
Malaysia
| | - Hyun-Jun Kim
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826,
Korea
| | - Heesang Hong
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826,
Korea
| | - Ghiseok Kim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826,
Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826,
Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354,
Korea
| |
Collapse
|
5
|
Yu Q, Liu S, Liu Q, Wen R, Sun C. Meat exudate metabolomics reveals the impact of freeze-thaw cycles on meat quality in pork loins. Food Chem X 2024; 24:101804. [PMID: 39296479 PMCID: PMC11408046 DOI: 10.1016/j.fochx.2024.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024] Open
Abstract
The aim of this study was to explore the effects of freeze-thaw (FT) cycles on meat quality, myofibrillar protein gelation and emulsification properties, and exudate metabolome changes in pork loins. Meat tenderness improved (P < 0.05), whereas water-holding capacity (WHC), meat color attributes declined (P < 0.05) with FT cycles. Multiple FT accelerated meat lipid and protein oxidations. Decreases in strength and WHC of myofibrillar protein gels with FT cycles were confirmed. Myofibrillar protein emulsions with more FT cycles showed a decrease in the emulsifying activity index (P < 0.001) and larger oil droplets, resulting in poorer storage stability. A total of 501 metabolites were tentatively identified in pork exudates, with 21 metabolites significantly correlated (P < 0.05 and r > 0.6) with meat quality attributes. These results demonstrated the potential of using the metabolomic information from exudates to elaborate on or even predict the FT cycles, or meat quality.
Collapse
Affiliation(s)
- Qianqian Yu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Shuo Liu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Qianqian Liu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Rongxin Wen
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Chengfeng Sun
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| |
Collapse
|
6
|
Al-Dalali S, He Z, Du M, Sun H, Zhao D, Li C, Li P, Xu B. Influence of frozen storage and flavoring substances on the nonvolatile metabolite profile of raw beef: Correlation of lipids and lipid-like molecules with flavor profiles. Food Chem X 2024; 24:101898. [PMID: 39498248 PMCID: PMC11532440 DOI: 10.1016/j.fochx.2024.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
This study aimed to explore the effects of frozen storage and flavoring substances (sugar and salt) on the metabolite profiles of nonflavored (BS1) and flavored (BS2) beef samples through UHPLC-MS/MS and an untargeted method and flavor profiles using GC-MS and targeted method. Analysis was conducted during 0, 3, and 6 months of frozen storage. A comprehensive analysis of biochemical databases yielded a total of 1791 metabolites: 1183 metabolites were identified in positive ion mode and 608 in negative ion mode. There were 3 categories of metabolites under superclass classification, accounting for 77.93 % of the total metabolites, including lipids and lipid-like compounds (502 species, 33.87 %), organic acids and derivatives (459 species, 30.97 %), and organoheterocyclic compounds (194, 13.09 %). Multivariate statistical analysis showed that after 0, 3, and 6 months of frozen storage, 120, 106, and 62 differential metabolites, respectively, were identified in the comparison between the BS1 and BS2 samples. The results indicated that frozen storage has a decreasing effect on the differential metabolites, while the flavoring substances mainly enhance the metabolite profiles. It can be concluded that flavoring substances and frozen storage primarily influence the metabolites. At 0 and 6 months of frozen storage, 27 volatiles were detected. The correlation analysis displayed a positive correlation between lipids and lipid-like molecules and flavor compounds.
Collapse
Affiliation(s)
- Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
- Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China
- Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb 70270, Yemen
| | - Zhigui He
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
- Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China
| | - Miying Du
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
- Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China
| | - Hui Sun
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
- Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China
| | - Dong Zhao
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
- Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
7
|
Xu C, Wang S, Bai J, Chen X, Shi Y, Hao J, Zhao B. Dynamic microbial community and metabolic profiling in refrigerated beef: Insights from diverse packaging strategies. Food Res Int 2024; 197:115170. [PMID: 39593381 DOI: 10.1016/j.foodres.2024.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
Extending the shelf life of fresh beef is essential for meat industry. This study explored the microbial community succession, metabolic profile changes, and their interactions during refrigerated storage of beef under different packaging methods. The results showed that compared with air packaging (AP), vacuum packaging (CV) and vacuum skin packaging (VS) maintained higher microbial diversity over longer periods. Among 1,106 metabolites identified, lipids and lipid-like molecules were most prominent. Unique pathways in VS beef, such as oxidative phosphorylation and calcium signaling pathways, underscored its advantages in maintaining beef flavor and oxidation stability. Moreover, dozens of metabolites were identified as potential biomarkers of the treatment effects of different packaging methods. Correlation analysis presented a significant positive correlation between bacterial genera like Brochothrix, Acinetobacter, Serratia, and metabolites such as lipids, organic acids, and nucleotides. This research offers essential insights for optimizing product safety and extending shelf life in the future meat industry.
Collapse
Affiliation(s)
- Chenchen Xu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing the Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Shouwei Wang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing the Key Laboratory of Meat Processing Technology, Beijing 100068, China.
| | - Jing Bai
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing the Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Xiangning Chen
- Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Yuxuan Shi
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing the Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Jingyi Hao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing the Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Bing Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing the Key Laboratory of Meat Processing Technology, Beijing 100068, China.
| |
Collapse
|
8
|
Deng C, Zou H, Wu Y, Lou A, Liu Y, Luo J, Quan W, Shen Q. Dietary supplementation with quercetin: an ideal approach for improving meat quality and oxidative stability of broiler chickens. Poult Sci 2024; 103:103789. [PMID: 38833740 PMCID: PMC11190705 DOI: 10.1016/j.psj.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
This study aimed to improve the eating quality of yellow-feathered broiler chicks by feeding them corn-soybean meal diets supplemented with 250, 500, and 1,000 mg/kg quercetin. we examined the impact of varying doses of dietary quercetin on the sensory quality of chicken breast meat as well as on the antioxidant enzymes, antioxidant-related signaling molecules, structure and thermal stability of myofibrillar protein (MPs), and microstructure of myogenic fibers in the meat during 24 h of postslaughter aging. Additionally, we investigated the potential correlations among antioxidant capacity, MP structure, and meat quality parameters. The results indicated that dietary supplementations with 500 and 1,000 mg/kg quercetin improved the physicochemical properties and eating quality of yellow-feathered broiler chicken breast meat during 12 to 24 h postslaughter. Additionally, quercetin improved the postslaughter oxidative stress status and reduced protein and lipid oxidation levels. It also increased hydrogen bonding interactions and α-helix content during 6 to 12 h postslaughter and decreased β-sheet content during 12 to 24 h postslaughter in chicken breast MP. This resulted in improved postslaughter MP structure and thermal stability. The correlation results indicated that the enhancement of antioxidant capacity and MP structure enhanced the physicochemical and edible qualities of yellow-feathered broiler chicken breast meat. In conclusion, the current findings suggest that dietary supplementation with quercetin is an ideal approach for improving the eating quality of chicken meat, thereby broadening our understanding of theoretical and technological applications for improving the quality of chicken.
Collapse
Affiliation(s)
- Chuangye Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huiyu Zou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yanyang Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yan Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
9
|
Kim HJ, Kim HJ, Jo C. A non-destructive predictive model for estimating the freshness/spoilage of packaged chicken meat using changes in drip metabolites. Int J Food Microbiol 2024; 419:110738. [PMID: 38772219 DOI: 10.1016/j.ijfoodmicro.2024.110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/07/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
This study investigates the possibility of utilizing drip as a non-destructive method for assessing the freshness and spoilage of chicken meat. The quality parameters [pH, volatile base nitrogen (VBN), and total aerobic bacterial counts (TAB)] of chicken meat were evaluated over a 13-day storage period in vacuum packaging at 4 °C. Simultaneously, the metabolites in the chicken meat and its drip were measured by nuclear magnetic resonance. Correlation (Pearson's and Spearman's rank) and pathway analyses were conducted to select the metabolites for model training. Binary logistic regression (model 1 and model 2) and multiple linear regression models (model 3-1 and model 3-2) were trained using selected metabolites, and their performance was evaluated using receiver operating characteristic (ROC) curves. As a result, the chicken meat was spoiled after 7 days of storage, exceeding 20 mg/100 g VBN and 5.7 log CFU/g TAB. The correlation analysis identified one organic acid, eight free amino acids, and five nucleic acids as highly correlated with chicken meat and its drip during storage. Pathway analysis revealed tyrosine and purine metabolism as metabolic pathways highly correlated with spoilage. Based on these findings, specific metabolites were selected for model training: ATP, glutamine, hypoxanthine, IMP, tyrosine, and tyramine. To predict the freshness and spoilage of chicken meat, model 1, trained using tyramine, ATP, tyrosine, and IMP from chicken meat, achieved a 99.9 % accuracy and had an ROC value of 0.884 when validated using drip metabolites. This model 1 was improved by training with tyramine and IMP from both chicken meat and its drip (model 2), which increased the ROC value for drip metabolites from 0.884 to 0.997. Finally, selected two metabolites (tyramine and IMP) can predict TAB and VBN quantitatively through models 3-1 and 3-2, respectively. Therefore, the model developed using metabolic changes in drip demonstrated the capability to non-destructively predict the freshness and spoilage of chicken meat at 4 °C. To make generic predictions, it is necessary to expand the model's applicability to various conditions, such as different temperatures, and validate its performance across multiple chicken batches.
Collapse
Affiliation(s)
- Hyun-Jun Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Jin Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Department of Animal Product Technology, Faculty of Animal Husbandary, Universitas Padjadjaran, West Java 45363, Indonesia.
| |
Collapse
|
10
|
Yu Q, Gu X, Liu Q, Wen R, Sun C. Effect of wet-aging on meat quality and exudate metabolome changes in different beef muscles. Food Res Int 2024; 184:114260. [PMID: 38609237 DOI: 10.1016/j.foodres.2024.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
The aim of this study was to evaluate meat quality and changes in the meat exudate metabolome of different beef muscles (5 d postmortem, longissimus lumborum and psoas major muscles) during wet-aging (additional 3, 7, 14, 21, and 28 d of aging). Shear force of meat declined significantly (P < 0.001) with aging, meanwhile, increased myofibril fragmentation index, lipid and protein oxidation with aging were observed (P < 0.01). Psoas major (PM) showed significantly higher (P < 0.05) purge loss, centrifugal loss, and cooking loss, as well as higher tenderness and more severe lipid and protein oxidation (P < 0.01) than longissimus lumborum (LL) during aging. Principal component analysis of the metabolomic profiles revealed distinct clusters according to the period of aging and the type of muscle simultaneously. Overabundant amino acids, peptides, oxidized fatty acids, and hydroxy fatty acids were found in long-term aged meat exudates, and forty metabolites were significantly correlated with meat quality characteristics. Fifty-nine metabolites were significantly affected by muscle type. These results demonstrated the potential possibility of evaluating meat quality using meat exudate metabolomics.
Collapse
Affiliation(s)
- Qianqian Yu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Xuejing Gu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Qianqian Liu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Rongxin Wen
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China.
| | - Chengfeng Sun
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China.
| |
Collapse
|
11
|
Zhang M, Sun L, Su R, Corazzin M, Yang Z, Dou L, Hu G, Zhang Y, Liu T, Guo Y, Zhao L, Su L, Tian J, Jin Y. Widely targeted metabolomic analysis reveals the dynamic changes of metabolites during postmortem chilled aging in Mongolian sheep. Food Chem 2024; 431:137035. [PMID: 37567080 DOI: 10.1016/j.foodchem.2023.137035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Postmortem aging is a value-added process for meat. The objective of this study was to evaluate the dynamic changes and metabolic pathways of metabolites in Mongolian sheep during early postmortem chilled aging. Widely targeted metabolomic was used to analyze the metabolites of mutton within five days of chilled aging. A total of 1093 metabolites were identified in Mongolian sheep, covering 16 subclasses. Multivariate statistical analysis showed that 467 metabolites had significant changes during aging, including amino acid and its metabolites, fatty acyl, and glycerophospholipid. In particular, 60 metabolites decreased, while other 407 metabolites increased with aging time. The Kyoto encyclopedia of genes and genomes pathway analysis revealed that protein digestion and absorption, amino acyl-trNA biosynthesis, unsaturated fatty acid biosynthesis, nucleotide metabolism and carbon metabolism were the main enrichment pathways in aging. These findings provide a more comprehensive insight into metabolic profiling and metabolic pathways during chilled aging in mutton.
Collapse
Affiliation(s)
- Min Zhang
- College of Food Science and Engineering, Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agriculture University, China
| | - Lina Sun
- College of Food Science and Engineering, Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agriculture University, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Zhihao Yang
- College of Food Science and Engineering, Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agriculture University, China
| | - Lu Dou
- College of Food Science and Engineering, Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agriculture University, China
| | - Guanhua Hu
- College of Food Science and Engineering, Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agriculture University, China
| | - Yue Zhang
- College of Food Science and Engineering, Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agriculture University, China
| | - Ting Liu
- College of Food Science and Engineering, Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agriculture University, China
| | - Yueying Guo
- College of Food Science and Engineering, Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agriculture University, China
| | - Lihua Zhao
- College of Food Science and Engineering, Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agriculture University, China
| | - Lin Su
- College of Food Science and Engineering, Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agriculture University, China
| | - Jianjun Tian
- College of Food Science and Engineering, Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agriculture University, China
| | - Ye Jin
- College of Food Science and Engineering, Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agriculture University, China.
| |
Collapse
|
12
|
Liu J, Pan C, Yue H, Li H, Liu D, Hu Z, Hu Y, Yu X, Dong W, Feng Y. Proteomic and metabolomic analysis of ageing beef exudate to determine that iron metabolism enhances muscle protein and lipid oxidation. Food Chem X 2023; 20:101038. [PMID: 38144814 PMCID: PMC10739755 DOI: 10.1016/j.fochx.2023.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
The study aimed to assess differences in proteomic and metabolite profiles in ageing (1, 2, 4, and 6 days at 4 °C) beef exudates and determine their relationship with beef muscle iron metabolism and oxidation. Proteomic and metabolomic analyses identified 877 metabolites and 1957 proteins. The joint analysis identified 24 differential metabolites (DMs) and 56 differentially expressed proteins (DEPs) involved in 15 shared pathways. Ferroptosis was identified as the only iron metabolic pathway, and 4 DMs (l-glutamic acid, arachidonic acid, glutathione and gamma-glutamylcysteine) and 5 DEPs (ferritin, phospholipid hydroperoxide glutathione peroxidase, heme oxygenase 1, major prion protein, and acyl-CoA synthetase long chain family member 4) were involved in iron metabolism by regulating heme and ferritin degradation, Fe2+ and Fe3+ conversion, arachidonic acid oxidation and inactivation of glutathione peroxidase (GPX) 4, leading to increased levels of free iron, ROS, protein and lipid oxidation (P < 0.05). Overall, abnormal iron metabolism during ageing induced oxidative stress in muscle tissue.
Collapse
Affiliation(s)
- Jun Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China
- Faculty of Life and Food Sciences, Ningxia University, 750021 Yinchuan, China
| | - Cuili Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Faculty of Life and Food Sciences, Ningxia University, 750021 Yinchuan, China
| | - Hui Yue
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - He Li
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Dunhua Liu
- Faculty of Life and Food Sciences, Ningxia University, 750021 Yinchuan, China
| | - Ziying Hu
- Faculty of Life and Food Sciences, Ningxia University, 750021 Yinchuan, China
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China
| | - Xiang Yu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China
| | - Weiwei Dong
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Yanli Feng
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| |
Collapse
|
13
|
Zuo X, Chen M, Zhang X, Guo A, Cheng S, Zhang R. Transcriptomic and metabolomic analyses to study the key role by which Ralstonia insidiosa induces Listeria monocytogenes to form suspended aggregates. Front Microbiol 2023; 14:1260909. [PMID: 37901811 PMCID: PMC10601645 DOI: 10.3389/fmicb.2023.1260909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
Ralstonia insidiosa can survive in a wide range of aqueous environments, including food processing areas, and is harmful to humans. It can induce Listeria monocytogenes to form suspended aggregates, resulting from the co-aggregation of two bacteria, which allows for more persistent survival and increases the risk of L. monocytogenes contamination. In our study, different groups of aggregates were analyzed and compared using Illumina RNA sequencing technology. These included R. insidiosa under normal and barren nutrient conditions and in the presence or absence of L. monocytogenes as a way to screen for differentially expressed genes (DEGs) in the process of aggregate formation. In addition, sterile supernatants of R. insidiosa were analyzed under different nutrient conditions using metabolomics to investigate the effect of nutrient-poor conditions on metabolite production by R. insidiosa. We also undertook a combined analysis of transcriptome and metabolome data to further investigate the induction effect of R. insidiosa on L. monocytogenes in a barren environment. The results of the functional annotation analysis on the surface of DEGs and qPCR showed that under nutrient-poor conditions, the acdx, puuE, and acs genes of R. insidiosa were significantly upregulated in biosynthetic processes such as carbon metabolism, metabolic pathways, and biosynthesis of secondary metabolites, with Log2FC reaching 4.39, 3.96, and 3.95 respectively. In contrast, the Log2FC of cydA, cyoB, and rpsJ in oxidative phosphorylation and ribosomal pathways reached 3.74, 3.87, and 4.25, respectively. Thirty-one key components were identified while screening for differential metabolites, which mainly included amino acids and their metabolites, enriched to the pathways of biosynthesis of amino acids, phenylalanine metabolism, and methionine metabolism. Of these, aminomalonic acid and Proximicin B were the special components of R. insidiosa that were metabolized under nutrient-poor conditions.
Collapse
Affiliation(s)
- Xifeng Zuo
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meilin Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinshuai Zhang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ailing Guo
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Si Cheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rong Zhang
- Liunan District Modern Agricultural Industry Service Center of Liuzhou City, Liuzhou, Guangxi, China
| |
Collapse
|
14
|
Kerth CR, Wall KR, Hicks ZM, Miller RK. Using untargeted metabolomics and volatile aroma compounds to predict expert sensory descriptors and consumer liking of beef loin steaks varying in quality grade, aging time, and degree of doneness. Meat Sci 2023; 204:109255. [PMID: 37343480 DOI: 10.1016/j.meatsci.2023.109255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Precursors to flavor are important to its development, yet little is known about the intrinsic products of metabolism that influence flavor. Our objective was to use untargeted metabolomics and volatile aroma compounds to predict expert and consumer sensory traits. USDA Select and upper 2/3 Choice beef strip loins were wet aged for 10 or 20 d and then cut into steaks, vacuum-packaged, and frozen. Steaks were cooked to 63 °C, 71 °C, or 80 °C end-point internal steak temperature. USDA Choice steaks had more intense beef flavor identity, brown, roasted, fat-like, salty, sweet, sour, umami, buttery, and overall sweet flavors compared to USDA Select steaks (P < 0.05). Steaks cooked to 80 °C had more intense beef identity, brown, roasted, and umami flavors than steaks cooked to a lower degree of doneness. Steaks cooked to either 63 °C or 71 °C had more intense bloody, metallic, and sour flavors and were juicier, more tender, and had less connective tissue than steaks cooked to a higher degree of doneness. Volatile aroma compounds increased (P < 0.05) in Choice steaks aged for 20 d, while cooking steaks to 80 increased aldehydes, ketones, and pyrazines. Raw steaks had 69 small-molecule metabolomic compounds shared across all four quality grade x aging combinations, and discriminant analysis correctly categorized (P < 0.05) these metabolites. Metabolites and volatiles can be used to predict (r2 > 0.85) expert and consumer sensory panel descriptors and liking.
Collapse
Affiliation(s)
- Chris R Kerth
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| | | | - Zena M Hicks
- Department of Animal Science, University of Nebraska, Lincoln, NE 68182, USA
| | - Rhonda K Miller
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
15
|
Setyabrata D, Ma D, Xie S, Thimmapuram J, Cooper BR, Aryal UK, Kim YHB. Proteomics and metabolomics profiling of meat exudate to determine the impact of postmortem aging on oxidative stability of beef muscles. Food Chem X 2023; 18:100660. [PMID: 37025416 PMCID: PMC10070507 DOI: 10.1016/j.fochx.2023.100660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The objective of this study was to characterize the major proteomes and metabolites in beef exudate and determine their relationship to color and oxidative quality of beef muscles. Beef loin (LD) and tenderloin (PM) muscles were cut into sections, individually vacuum-packaged, and aged for 9, 16 and 23 days at 2 °C. Following aging, beef exudates were collected and analyzed for both proteomics and metabolomics profiles. Proteome analysis indicated clustering by muscle types, while metabolomics profiling further clustered the samples based on the aging periods. The PM exudate had a greater concentration of oxidative enzymes, while the LD exudate contained more glycolytic enzymes. Greater lipid, nucleotide, carnitine and glucoside metabolites were observed in LD and 23d exudates. HSP70 and laminin proteins, together with glucosides metabolites, were correlated to muscle oxidative stability. The results indicated that meat exudate could be a viable analytical matrix to determine changes in quality attributes of meat with aging.
Collapse
Affiliation(s)
- Derico Setyabrata
- Meat Science and Muscle Biology Lab, Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
- Department of Animal Science, University of Arkansas, Fayetteville, AR, USA
| | - Danyi Ma
- Meat Science and Muscle Biology Lab, Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | | | - Bruce R. Cooper
- Metabolites Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, Purdue University, West Lafayette, IN, USA
| | - Yuan H. Brad Kim
- Meat Science and Muscle Biology Lab, Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
- Corresponding author.
| |
Collapse
|
16
|
Gu M, Li C, Chen L, Li S, Xiao N, Zhang D, Zheng X. Insight from untargeted metabolomics: Revealing the potential marker compounds changes in refrigerated pork based on random forests machine learning algorithm. Food Chem 2023; 424:136341. [PMID: 37216778 DOI: 10.1016/j.foodchem.2023.136341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Data on changes in non-volatile components and metabolic pathways during pork storage were inadequately investigated. Herein, an untargeted metabolomics coupled with random forests machine learning algorithm was proposed to identify the potential marker compounds and their effects on non-volatile production during pork storage by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS). A total of 873 differential metabolites were identified based on analysis of variance (ANOVA). Bioinformatics analysis shows that the key metabolic pathways for protein degradation and amino acid transport are amino acid metabolism and nucleotide metabolism. Finally, 40 potential marker compounds were screened using the random forest regression model, innovatively proposing the key role of pentose-related metabolism in pork spoilage. Multiple linear regression analysis revealed that d-xylose, xanthine, and pyruvaldehyde could be key marker compounds related to the freshness of refrigerated pork. Therefore, this study could provide new ideas for the identification of marker compounds in refrigerated pork.
Collapse
Affiliation(s)
- Minghui Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Cheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Naiyu Xiao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
17
|
Yu Q, Li S, Cheng B, Brad Kim YH, Sun C. Investigation of changes in proteomes of beef exudate and meat quality attributes during wet-aging. Food Chem X 2023; 17:100608. [PMID: 36974193 PMCID: PMC10039265 DOI: 10.1016/j.fochx.2023.100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
This study was performed to evaluate the effects of wet-aging (3, 7, 14, 21, and 28 d at 2 °C) on beef (longissimus lumborum muscles) exudate proteome and meat quality changes. The pH, purge loss, and tenderness of beef increased with aging (P < 0.05), while color and lipid oxidative stabilities decreased, especially when long-term (14 and 21 d) aged meat were repackaged and displayed under retail condition (P < 0.05). Nineteen proteins changed significantly with aging (FDR < 0.05), in which most of them progressively accumulated in exudates over aging periods. Combined with partial least squares discriminant analysis, 16 proteins (including 9 structural proteins, 3 metabolic enzymes, 1 heat shock protein, 2 binding proteins, and KBTBD10 protein) were screened as characteristic proteins that could be used for potential meat quality indication. These findings offered novel insight into the utilization of exudates for meat quality assessment.
Collapse
Affiliation(s)
- Qianqian Yu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Shimeng Li
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Bei Cheng
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Yuan H. Brad Kim
- Meat Science and Muscle Biology Laboratory, Department of Animal Science, Purdue University, West Lafayette, IN 47906, United States
| | - Chengfeng Sun
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
- Corresponding author.
| |
Collapse
|
18
|
Chen C, Zheng J, Xiong C, Zhou H, Wei C, Hu X, Qian X, He M, Shi Y, Liu Y, Li Z. Metabolomics Characterize the Differential Metabolic Markers between Bama Xiang Pig and Debao Pig to Identify Pork. Foods 2022; 12:foods12010005. [PMID: 36613221 PMCID: PMC9818558 DOI: 10.3390/foods12010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The Bama Xiang pig (BM) is a unique pig species in Guangxi Province, China. Compared to other breeds of domestic pig, such as the Debao pig (DB), it is smaller in size, better in meat quality, resistant to rough feeding and strong in stress resistance. These unique advantages of Bama Xiang pigs make them of great edible value and scientific research value. However, the differences in muscle metabolites between Bama Xiang pigs (BM) and Debao pigs (DB) are largely unexplored. Here, we identified 214 differential metabolites between these two pig breeds by LC-MS. Forty-one such metabolites are enriched into metabolic pathways, and these metabolites correspond to 11 metabolic pathways with significant differences. In Bama pigs, the abundance of various metabolites such as creatine, citric acid, L-valine and hypoxanthine is significantly higher than in Debao pigs, while the abundance of other metabolites, such as carnosine, is significantly lower. Among these, we propose six differential metabolites: L-proline, citric acid, ribose 1-phosphate, L-valine, creatine, and L-arginine, as well as four potential differential metabolites (without the KEGG pathway), alanyl-histidine, inosine 2'-phosphate, oleoylcarnitine, and histidinyl hydroxyproline, as features for evaluating the meat quality of Bama pigs and for differentiating pork from Bama pigs and Debao pigs. This study provides a proof-of-concept example of distinguishing pork from different pig breeds at the metabolite level and sheds light on elucidating the biological processes underlying meat quality differences. Our pork metabolites data are also of great value to the genomics breeding community in meat quality improvement.
Collapse
Affiliation(s)
- Changyi Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530003, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Junwen Zheng
- College of Animal Science and Technology, Guangxi University, Nanning 530003, China
| | - Chenyong Xiong
- College of Animal Science and Technology, Guangxi University, Nanning 530003, China
| | - Hongjin Zhou
- College of Animal Science and Technology, Guangxi University, Nanning 530003, China
| | - Chuntao Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530003, China
| | - Xin Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530003, China
| | - Xinxiu Qian
- College of Animal Science and Technology, Guangxi University, Nanning 530003, China
| | - Mengyi He
- College of Animal Science and Technology, Guangxi University, Nanning 530003, China
| | - Yandi Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530003, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Correspondence: (Y.L.); (Z.L.)
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning 530003, China
- Correspondence: (Y.L.); (Z.L.)
| |
Collapse
|
19
|
Liu J, Hu Z, Zheng A, Ma Q, Liu D. Identification of exudate metabolites associated with quality in beef during refrigeration. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
20
|
Tuell JR, Nondorf MJ, Abdelhaseib M, Setyabrata D, Barker S, Legako JF, Kim YHB. Beef quality, biochemical attributes, and descriptive sensory scores of
gluteus medius, biceps femoris
, and
tensor fasciae latae
muscles subjected to combined tumbling and postmortem aging. J Food Sci 2022; 87:3781-3796. [DOI: 10.1111/1750-3841.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jacob R. Tuell
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences Purdue University West Lafayette Indiana USA
| | - Mariah J. Nondorf
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences Purdue University West Lafayette Indiana USA
| | - Maha Abdelhaseib
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences Purdue University West Lafayette Indiana USA
| | - Derico Setyabrata
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences Purdue University West Lafayette Indiana USA
| | - Samantha Barker
- Department of Animal and Food Sciences Texas Tech University Lubbock Texas USA
| | - Jerrad F. Legako
- Department of Animal and Food Sciences Texas Tech University Lubbock Texas USA
| | - Yuan H. Brad Kim
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences Purdue University West Lafayette Indiana USA
| |
Collapse
|
21
|
Proteomics and Metabolomics Profiling of Pork Exudate Reveals Meat Spoilage during Storage. Metabolites 2022; 12:metabo12070570. [PMID: 35888694 PMCID: PMC9323900 DOI: 10.3390/metabo12070570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
Previous studies have evaluated pork quality by omics methods. However, proteomics coupled with metabolomics to investigate pork freshness by using pork exudates has not been reported. This study determined the changes in the profiles of peptides and metabolites in exudates from pork stored at different temperatures (25, 10, 4, and −2 °C). Multivariate statistical analysis revealed similar changes in profiles in exudates collected from pork stored at −2 and 4 °C, and additional changes following storage at higher temperatures. We identified peptides from 7 proteins and 30 metabolites differing in abundance between fresh and spoiled pork. Significant correlations between pork quality and most of the peptides from these 7 proteins and 30 metabolites were found. The present study provides insight into changes in the peptide and metabolite profiles of exudates from pork during storage at different temperatures, and our analysis suggests that such changes can be used as markers of pork spoilage.
Collapse
|
22
|
Panseri S, Arioli F, Pavlovic R, Di Cesare F, Nobile M, Mosconi G, Villa R, Chiesa LM, Bonerba E. Impact of irradiation on metabolomics profile of ground meat and its implications toward food safety. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Foodomics: Current and Future Perspectives in Food Analysis. Foods 2022; 11:foods11091238. [PMID: 35563961 PMCID: PMC9105153 DOI: 10.3390/foods11091238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Climate change, an increase in population, and the recent pandemic crisis triggered by SARS-CoV-2 have all contributed to a period of global problems [...].
Collapse
|
24
|
Tamura Y, Iwatoh S, Miyaura K, Asikin Y, Kusano M. Metabolomic profiling reveals the relationship between taste-related metabolites and roasted aroma in aged pork. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|