1
|
Martínez-Cortés DM, Vera-Pérez J, Valencia-Del-Toro G, Franco-Hernández MO, Yolanda GYG. RP-UHPLC method development and validation for the rapid determination of phenolic antioxidants from Allium cepa and Allium sativum extracts. J Pharm Biomed Anal 2025; 257:116698. [PMID: 39889446 DOI: 10.1016/j.jpba.2025.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Phenolic compounds obtained from natural sources like Allium cepa and Allium sativum are of great interest due to their antioxidant capacity and the multiple benefits they represent for health. However, many factors interfere with the quantity and quality of these compounds in plant material, this implies the need for fast, economical, precise and effective analytical methods that can be used in the quality control of products based on plant extracts. In this work, we propose a fast and reliable method for identifying and quantifying antioxidant compounds from natural sources by RP-UHPLC. This RP-UHPLC method was developed and validated in terms of linearity (R2 > 0.99), precision (SD = < 3.41E-5), detection limit (LOD = 1.2-9 ppm), and quantification limit (LOQ = 9-27 ppm) based on standards of antioxidant phenols commonly found in vegetables and plants. An accurate and reproducible chromatographic method was developed to analyze eleven antioxidants in less than 14 min. With this method, compounds such as gallic acid (g = 39 ± 12 mg/kg and o = 231 ± 70 mg/kg), catechin (g = 53 ± 4 mg/kg), and epigallocatechin (o = 252 ± 54 mg/kg) were identified and quantified in garlic and onion extracts. Furthermore, we demonstrated the antioxidant capacity of the extracted compounds from garlic and onion using ABTS (g = 22 % and o = 47 %) and DPPH (g = 31 % and o = 15 %) assays. These results demonstrate that the proposed method can be widely used in the analysis and quality control of samples or products containing antioxidant phenolic compounds.
Collapse
Affiliation(s)
- Dulce Maribel Martínez-Cortés
- Unidad Profesional Interdisciplinaria de Biotecnología Instituto Politécnico Nacional, Av. Acueducto s/n Barrio La Laguna, Ticomán Del. Gustavo A. Madero, Ciudad de México C.P. 07340, Mexico.
| | - Jonathan Vera-Pérez
- Unidad Profesional Interdisciplinaria de Biotecnología Instituto Politécnico Nacional, Av. Acueducto s/n Barrio La Laguna, Ticomán Del. Gustavo A. Madero, Ciudad de México C.P. 07340, Mexico.
| | - Gustavo Valencia-Del-Toro
- Unidad Profesional Interdisciplinaria de Biotecnología Instituto Politécnico Nacional, Av. Acueducto s/n Barrio La Laguna, Ticomán Del. Gustavo A. Madero, Ciudad de México C.P. 07340, Mexico.
| | - Marina Olivia Franco-Hernández
- Unidad Profesional Interdisciplinaria de Biotecnología Instituto Politécnico Nacional, Av. Acueducto s/n Barrio La Laguna, Ticomán Del. Gustavo A. Madero, Ciudad de México C.P. 07340, Mexico.
| | - Gómez-Y-Gómez Yolanda
- Unidad Profesional Interdisciplinaria de Biotecnología Instituto Politécnico Nacional, Av. Acueducto s/n Barrio La Laguna, Ticomán Del. Gustavo A. Madero, Ciudad de México C.P. 07340, Mexico.
| |
Collapse
|
2
|
Cucu P, Melinte V, Petrovici AR, Anghel N, Apostol I, Mares M, Simionescu N, Spiridon I. A Biopolymeric Dextran-Chitosan Delivery System for Controlled Release of Antioxidant and Anti-Inflammatory Compounds: Lignin and Curcumin. Molecules 2025; 30:1276. [PMID: 40142050 PMCID: PMC11946708 DOI: 10.3390/molecules30061276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Biopolymeric drug delivery systems enhance the bioavailability and therapeutic efficacy of poorly soluble bioactive compounds. In this study, chitosan (Chi), dextran (Dex), carboxymethyl dextran (mDex), lignin (L), and curcumin (Cu) were combined to develop materials with controlled release, antioxidant, and anti-inflammatory properties. The mechanical evaluation showed that Chi-mDex-L-Cu exhibited the highest diametral tensile strength (2.40 MPa), a 1233% increase compared to Chi-mDex-L, due to strong hydrogen bonding interactions between curcumin and matrix components. Curcumin release kinetics, modeled using the Weibull equation, demonstrated that Chi-mDex-L-Cu presented the slowest release rate, reducing the cumulative release by 55.66% as compared to Chi-L-Cu, ensuring prolonged bioactivity. Despite its controlled release, Chi-mDex-L-Cu retained 60% antioxidant and 70% anti-inflammatory activity, making it a promising sustained-release system. The biocompatibility assessment confirmed cell viability above 85%, with Chi-mDex-L-Cu showing a slight (~10%) reduction at higher concentrations while remaining non-cytotoxic. These findings suggest that Chi-mDex-L-Cu is a strong candidate for biomedical applications requiring prolonged therapeutic effects, such as osteoarthritis treatment.
Collapse
Affiliation(s)
- Paula Cucu
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania; (P.C.); (M.M.)
| | - Violeta Melinte
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania (A.R.P.); (I.A.); (N.S.)
| | - Anca Roxana Petrovici
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania (A.R.P.); (I.A.); (N.S.)
| | - Narcis Anghel
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania (A.R.P.); (I.A.); (N.S.)
| | - Irina Apostol
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania (A.R.P.); (I.A.); (N.S.)
| | - Mihai Mares
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania; (P.C.); (M.M.)
| | - Natalia Simionescu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania (A.R.P.); (I.A.); (N.S.)
| | - Iuliana Spiridon
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania (A.R.P.); (I.A.); (N.S.)
| |
Collapse
|
3
|
Yu J, Wu Y, Zeng C, Wu H, Jia G, Ye J, Qin S, Liu Z, Shi M. Phytochemicals from fractioned dark tea water extract enhance the digestive enzyme inhibition, antioxidant capacities and glucose-lipid balance. Food Res Int 2025; 204:115957. [PMID: 39986798 DOI: 10.1016/j.foodres.2025.115957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/24/2025]
Abstract
Dark tea has long been recognized for its health-promoting benefits, attributed to its complex phytochemical composition. However, the specific bioactive compounds responsible for these beneficial effects remain inadequately characterized. This study aimed to explore the impact of dark tea water extract (DTE) on digestive enzyme activity, antioxidant capacity, and glucose-lipid balance. DTE was fractioned into four fractions using gel separation, followed by analysis with high-performance liquid chromatography and quasi-targeted metabolomics. The 30 % ethanol elution (EEA) and 50 % ethanol elution (EEB) fractions showed stronger antioxidant and enzyme inhibition effects compared to the whole DTE. The EEA fraction was rich in 5 catechins and 26 additional phytochemicals, while the EEB fraction contained high levels of caffeine, ECG, and 29 other phytochemicals. Notably, significant correlations were observed between quercetin-3,4'-O-di-β-glucopyranoside and 3-(2-Naphthyl)-L-alanine with digestive enzyme inhibition. Cellular studies revealed the ability of EEA and EEB to reduce lipid accumulation, improve glycolipid metabolism, and alleviate oxidative stress by increasing SOD, CAT, and GSH levels while decreasing MDA and ROS in HepG2 cells. Furthermore, 34 flavonoids, 2 alkaloids, 2 terpenes, 2 alcohols and polyols, 2 phenylpropanoids and polyketides, 1 organoheterocyclic compound were directly linked to the antioxidant activity and the modulation of glucose and lipid levels. These findings offer valuable insights into the phytochemical profiles of dark tea and its potential health benefits.
Collapse
Affiliation(s)
- Jia Yu
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128 China
| | - Yuanjie Wu
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128 China
| | - Chaoxi Zeng
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128 China
| | - Haoren Wu
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128 China
| | - Gaofeng Jia
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128 China
| | - Jianhui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310013 China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128 China
| | - Zhonghua Liu
- National Research Centers of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128 China.
| | - Meng Shi
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128 China.
| |
Collapse
|
4
|
Pino-Ramos LL, Farias DR, Olivares-Caro L, Mitsi C, Mardones C, Echeverria J, Avila F, Gutierrez M. Chilean papaya ( Vasconcellea pubescens A. DC.) residues as a source of bioactive compounds: Chemical composition, antioxidant capacity, and antiglycation effects. Heliyon 2024; 10:e38837. [PMID: 39435094 PMCID: PMC11492262 DOI: 10.1016/j.heliyon.2024.e38837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
The Chilean papaya (Vasconcellea pubescens A.DC.) is a climacteric fruit that grows in the north and center of Chile. During its processing, residues formed mainly by mucilage and seeds are produced and mostly discarded, despite being a potential source of bioactive metabolites. This work aimed to apply untargeted metabolic analysis by HPLC-DAD-QToF to study the chemical composition of ethyl acetate and methanol extracts from Chilean papaya residues and evaluate their antioxidant and antiglycation capacities. Twenty-three metabolites were tentatively identified in papaya residues, including one carboxylic acid, one glycosylated hydroquinone, four flavan-3-ols, three proanthocyanidins, twelve glycosylated flavonols, one carbohydrate, and one alkaloid reported for the first time. The antioxidant capacity measured as the scavenging of DPPH• and ABTS•+ radicals was comparable with that of ascorbic acid. Chilean papaya extracts decreased fluorescent Advanced Glycation End (AGE) products and oxidative modifications in proteins induced by glucose.
Collapse
Affiliation(s)
- Liudis L. Pino-Ramos
- Instituto de Investigación Interdisciplinaria, Universidad de Talca, Talca, 3460000, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, 3460000, Chile
| | - Dafne Reyes Farias
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, 3460000, Chile
| | - Lia Olivares-Caro
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, 4070386, Chile
| | - Christina Mitsi
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, 4070386, Chile
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - Felipe Avila
- Escuela de Nutrición y Dietética. Universidad de Talca, Talca, 3460000, Chile
| | - Margarita Gutierrez
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, 3460000, Chile
| |
Collapse
|
5
|
Walencik PK, Choińska R, Gołębiewska E, Kalinowska M. Metal-Flavonoid Interactions-From Simple Complexes to Advanced Systems. Molecules 2024; 29:2573. [PMID: 38893449 PMCID: PMC11173564 DOI: 10.3390/molecules29112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
For many years, metal-flavonoid complexes have been widely studied as a part of drug discovery programs, but in the last decade their importance in materials science has increased significantly. A deeper understanding of the role of metal ions and flavonoids in constructing simple complexes and more advanced hybrid networks will facilitate the assembly of materials with tailored architecture and functionality. In this Review, we highlight the most essential data on metal-flavonoid systems, presenting a promising alternative in the design of hybrid inorganic-organic materials. We focus mainly on systems containing CuII/I and FeIII/II ions, which are necessary in natural and industrial catalysis. We discuss two kinds of interactions that typically ensure the formation of metal-flavonoid systems, namely coordination and redox reactions. Our intention is to cover the fundamentals of metal-flavonoid systems to show how this knowledge has been already transferred from small molecules to complex materials.
Collapse
Affiliation(s)
- Paulina Katarzyna Walencik
- Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Renata Choińska
- Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland;
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland;
| |
Collapse
|
6
|
Elferjane MR, Milutinović V, Jovanović Krivokuća M, Taherzadeh MJ, Pietrzak W, Marinković A, Jovanović AA. Vaccinium myrtillus L. Leaf Waste as a Source of Biologically Potent Compounds: Optimization of Polyphenol Extractions, Chemical Profile, and Biological Properties of the Extracts. Pharmaceutics 2024; 16:740. [PMID: 38931863 PMCID: PMC11206553 DOI: 10.3390/pharmaceutics16060740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The aims of the present research include (1) optimization of extraction from Vaccinium myrtillus leaf waste via investigation of plant material:medium ratio, extraction medium, and extraction period, employing extractions at room and high temperatures, or using ultrasound and microwaves (M, HAE, UAE, and MAE, respectively), (2) physicochemical characterization, and (3) investigation of extract biological potential. The statistical analysis revealed that optimal levels of parameters for the greatest polyphenolic yield were a proportion of 1:30 g/mL, ethyl alcohol 50% (v/v) during 2 min of microwave irradiation. By LC-MS analysis, 29 phenolic components were detected; HAE showed the highest richness of almost all determined polyphenols, while chlorogenic acid and quercetin 3-O-glucuronide were dominant. All extracts showed a high inhibition of Staphylococcus aureus growth. The effect of different parameters on extracts' antioxidant capacity depended on the used tests. The extracts also showed a stimulative influence on keratinocyte viability and anti-inflammatory activity (proven in cell-based ELISA and erythrocyte stabilization assays). The extraction procedure significantly affected the extraction yield (MAE ≥ maceration ≥ UAE ≥ HAE), whereas conductivity, density, surface tension, and viscosity varied in a narrow range. The presented research provides evidence on the optimal extraction conditions and technique, chemical composition, and antioxidant, antimicrobial, anti-inflammatory, and keratinocyte viability properties of bilberry extracts for potential applications in pharmacy and cosmetics.
Collapse
Affiliation(s)
- Muna Rajab Elferjane
- Faculty of Nursing and Health Sciences, University of Misurata, Alshowahda Park, 3rd Ring Road, Misurata 2478, Libya;
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Violeta Milutinović
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia;
| | - Milica Jovanović Krivokuća
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia;
| | - Mohammad J. Taherzadeh
- Swedish Centre for Resource Recovery, University of Borås, Allégatan 61, 503 37 Borås, Sweden;
| | - Witold Pietrzak
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia;
| |
Collapse
|
7
|
Hu B, Ouyang Y, Zhao T, Wang Z, Yan Q, Qian Q, Wang W, Wang S. Antioxidant Hydrogels: Antioxidant Mechanisms, Design Strategies, and Applications in the Treatment of Oxidative Stress-Related Diseases. Adv Healthc Mater 2024; 13:e2303817. [PMID: 38166174 DOI: 10.1002/adhm.202303817] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Indexed: 01/04/2024]
Abstract
Oxidative stress is a biochemical process that disrupts the redox balance due to an excess of oxidized substances within the cell. Oxidative stress is closely associated with a multitude of diseases and health issues, including cancer, diabetes, cardiovascular diseases, neurodegenerative disorders, inflammatory conditions, and aging. Therefore, the developing of antioxidant treatment strategies has emerged as a pivotal area of medical research. Hydrogels have garnered considerable attention due to their exceptional biocompatibility, adjustable physicochemical properties, and capabilities for drug delivery. Numerous antioxidant hydrogels have been developed and proven effective in alleviating oxidative stress. In the pursuit of more effective treatments for oxidative stress-related diseases, there is an urgent need for advanced strategies for the fabrication of multifunctional antioxidant hydrogels. Consequently, the authors' focus will be on hydrogels that possess exceptional reactive oxygen species and reactive nitrogen species scavenging capabilities, and their role in oxidative stress therapy will be evaluated. Herein, the antioxidant mechanisms and the design strategies of antioxidant hydrogels and their applications in oxidative stress-related diseases are discussed systematically in order to provide critical insights for further advancements in the field.
Collapse
Affiliation(s)
- Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Yongliang Ouyang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Tong Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Zhengyue Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, 999077, China
| | - Qiling Yan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Qinyuan Qian
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, 999077, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| |
Collapse
|
8
|
Azeredo PDS, Fan D, Murphy EA, Carver WE. Potential of Plant-Derived Compounds in Preventing and Reversing Organ Fibrosis and the Underlying Mechanisms. Cells 2024; 13:421. [PMID: 38474385 PMCID: PMC10930795 DOI: 10.3390/cells13050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Increased production of extracellular matrix is a necessary response to tissue damage and stress. In a normal healing process, the increase in extracellular matrix is transient. In some instances; however, the increase in extracellular matrix can persist as fibrosis, leading to deleterious alterations in organ structure, biomechanical properties, and function. Indeed, fibrosis is now appreciated to be an important cause of mortality and morbidity. Extensive research has illustrated that fibrosis can be slowed, arrested or even reversed; however, few drugs have been approved specifically for anti-fibrotic treatment. This is in part due to the complex pathways responsible for fibrogenesis and the undesirable side effects of drugs targeting these pathways. Natural products have been utilized for thousands of years as a major component of traditional medicine and currently account for almost one-third of drugs used clinically worldwide. A variety of plant-derived compounds have been demonstrated to have preventative or even reversal effects on fibrosis. This review will discuss the effects and the underlying mechanisms of some of the major plant-derived compounds that have been identified to impact fibrosis.
Collapse
Affiliation(s)
- Patrícia dos Santos Azeredo
- Laboratory of Atherosclerosis, Thrombosis and Cell Therapy, Institute of Biology, State University of Campinas—UNICAMP Campinas, Campinas 13083-970, Brazil;
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | - E. Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | - Wayne E. Carver
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| |
Collapse
|
9
|
Kukavica B, Škondrić S, Trifković T, Mišić D, Gašić U, Topalić-Trivunović L, Savić A, Velemir A, Davidović-Plavšić B, Šešić M, Lukić N. Comparative polyphenolic profiling of five ethnomedicinal plants and their applicative potential in the treatment of type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117377. [PMID: 37939910 DOI: 10.1016/j.jep.2023.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The medicinal plants Salvia officinalis, Trifolium pratense, Agrimonia eupatoria, Cichorium intybus and Vinca minor are traditionally used for the prevention and treatment of numerous diseases, including diabetes. AIM OF THE STUDY Type 2 diabetes (T2D) is one of the most common diseases nowadays, often accompanied by oxidative stress and microbial infections. The aim of our work was to examine the antidiabetic, antioxidant, and antimicrobial properties of ethanol extracts of five medicinal plants for the purpose of their possible use in the treatment of T2D. MATERIALS AND METHODS The polyphenolic profile of the plant extracts was analyzed by Ultra-High Performance Liquid Chromatography with a diode array detector configured with a triple quadrupole mass spectrometer (UHPLC/DAD/(-)HESI-MS2). In vitro antidiabetic activity of extracts was determined by measuring the percentage of α-amylase and α-glucosidase inhibition. The antioxidant activity of the extract was determined by different spectrophotometric methods, while the antimicrobial activity was determined by agar dilution and disc diffusion methods. RESULTS A. eupatoria extract contains the highest percentage of flavonoids (94%, with isoquercetin, vitexin, and rutin as the most abundant) in relation to the concentration of total phenolic compounds and exhibits excellent antidiabetic, antioxidant, and antimicrobial activity. S. officinalis extract contains 60% flavonoids (predominately cirsimaritin and epigallocatechin gallate) and 40% phenolic acids (with rosmarinic acid being the most abundant from this group) and exhibits weak antidiabetic activity, significant antioxidant activity, and excellent antibacterial activity. A 45% percentage of flavonoids (with isoquercetin as the most abundant one) and 55% of phenolic acids (with ferulic acid as the most abundant) were measured in the extract of T. pratense, which had excellent antidiabetic activity but weaker antioxidant and antimicrobial activity. A similar percentage of flavonoids (52%, with epigallocatechin gallate in the highest concentration) and phenolic acids (48%, with chlorogenic acid as the most abundant) was measured in the extract of C. intybus which showed moderate antidiabetic, antioxidant, and antimicrobial properties. The extract of V. minor was the richest in phenolic acids (80%, with the most abundant chlorogenic acid), which resulted in weaker antidiabetic and antioxidant activities (except for Fe2+ chelating ability) and antimicrobial activity. CONCLUSION The results indicate that specific phenolic compounds are responsible for the different biological activities of the plant extracts. Among the investigated plants, the extract of A. eupatoria has the greatest potential for applications in the treatment of T2D.
Collapse
Affiliation(s)
- Biljana Kukavica
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Siniša Škondrić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Tanja Trifković
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Danijela Mišić
- University of Belgrade, Institute for Biological Research "Siniša Stanković" Natonal Institute of Republic of Serbia, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Uroš Gašić
- University of Belgrade, Institute for Biological Research "Siniša Stanković" Natonal Institute of Republic of Serbia, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Ljiljana Topalić-Trivunović
- University of Banja Luka, Faculty of Technology, Vojvode Stepe Stepanovića 75, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Aleksandar Savić
- University of Banja Luka, Faculty of Technology, Vojvode Stepe Stepanovića 75, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Ana Velemir
- University of Banja Luka, Faculty of Technology, Vojvode Stepe Stepanovića 75, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Biljana Davidović-Plavšić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Milica Šešić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Nataša Lukić
- University of Hohenheim, Faculty of Agriculture, Institute of Landscape and Plant Ecology, Ottilie-Zeller-Weg 2, 70599, Stuttgart, Germany; University of Banja Luka, Faculty of Forestry, Bulevar vojvode Stepe Stepanovića 75a, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| |
Collapse
|
10
|
Semenescu AD, Moacă EA, Iftode A, Dehelean CA, Tchiakpe-Antal DS, Vlase L, Rotunjanu S, Muntean D, Chiriac SD, Chioibaş R. Recent Updates Regarding the Antiproliferative Activity of Galium verum Extracts on A375 Human Malignant Melanoma Cell Line. Life (Basel) 2024; 14:112. [PMID: 38255727 PMCID: PMC10820234 DOI: 10.3390/life14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The biological activity of Galium verum herba was exerted on various tumor cell lines with incredible results, but their potential effect on malignant melanoma has not been established yet. Therefore, the current study was structured in two directions: (i) the investigation of the phytochemical profile of diethyl ether (GvDEE) and butanol (GvBuOH) extracts of G. verum L. and (ii) the evaluation of their biological profile on A375 human malignant melanoma cell line. The GvDEE extract showed an FT-IR profile different from the butanol one, with high antioxidant capacity (EC50 of GvDEE = 0.12 ± 0.03 mg/mL > EC50 of GvBuOH = 0.18 ± 0.05 mg/mL). The GvDEE extract also showed antimicrobial potential, especially against Gram-positive bacteria strains, compared to the butanol extract, which has no antimicrobial activity against any bacterial strain tested. The results regarding the antitumor potential showed that both extracts decreased A375 cell viability largely (69% at a dose of 55 µg/mL of the GvDEE extract). Moreover, both extracts induce nuclear fragmentation by forming apoptotic bodies and slight chromatin condensation, which is more intense for GvDEE. Considering the results, one can state that the Galium verum herba possesses antitumor effects on the A375 human malignant melanoma cell line, a promising phytocompound for the antitumor approach to skin cancer.
Collapse
Affiliation(s)
- Alexandra-Denisa Semenescu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (E.-A.M.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (E.-A.M.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Andrada Iftode
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (E.-A.M.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristina-Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (E.-A.M.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Diana-Simona Tchiakpe-Antal
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8th Victor Babes Street, 400347 Cluj-Napoca, Romania;
| | - Slavita Rotunjanu
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Delia Muntean
- Department of Microbiology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Sorin Dan Chiriac
- Department X—Surgery II, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Raul Chioibaş
- Department IX—Surgery I, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania;
- CBS Medcom Hospital, 12th Popa Sapca Street, 300047 Timisoara, Romania
| |
Collapse
|
11
|
Wang TW, Tan J, Li LY, Yang Y, Zhang XM, Wang JR. Combined analysis of inorganic elements and flavonoid metabolites reveals the relationship between flower quality and maturity of Sophora japonica L. FRONTIERS IN PLANT SCIENCE 2023; 14:1255637. [PMID: 38046598 PMCID: PMC10691490 DOI: 10.3389/fpls.2023.1255637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Flos Sophorae (FS), or the dried flower buds of Sophora japonica L., is widely used as a food and medicinal material in China. The quality of S. japonica flowers varies with the developmental stages (S1-S5) of the plant. However, the relationship between FS quality and maturity remains unclear. Inductively coupled plasma optical emission spectrometry (ICP-OES) and ultra-high performance liquid chromatography coupled with electrospray ionization-triple quadrupole-linear ion trap mass spectrometry (UPLC-ESI-Q TRAP-MS/MS) were used to analyze inorganic elements and flavonoid metabolites, respectively. A combined analysis of the inorganic elements and flavonoid metabolites in FS was conducted to determine the patterns of FS quality formation. Sixteen inorganic elements and 173 flavonoid metabolites that accumulated at different developmental stages were identified. Notably, 54 flavonoid metabolites associated with the amelioration of major human diseases were identified, and Ca, P, K, Fe, and Cu were postulated to influence flavonoid metabolism and synthesis. This study offers a novel perspective and foundation for the further exploration of the rules governing the quality of plant materials.
Collapse
Affiliation(s)
- Tian-Wang Wang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Jun Tan
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Long-Yun Li
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Yong Yang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiao-Mei Zhang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ji-Rui Wang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| |
Collapse
|
12
|
Siano F, Sammarco AS, Fierro O, Castaldo D, Caruso T, Picariello G, Vasca E. Insights into the Structure-Capacity of Food Antioxidant Compounds Assessed Using Coulometry. Antioxidants (Basel) 2023; 12:1963. [PMID: 38001816 PMCID: PMC10669202 DOI: 10.3390/antiox12111963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
CDAC (coulometrically determined antioxidant capacity) involves the determination of the antioxidant capacity of individual compounds or their mixtures using constant-current coulometry, with electrogenerated Br2 as the titrant, and biamperometric detection of the endpoint via Br2 excess. CDAC is an accurate, sensitive, rapid, and cheap measurement of the mol electrons (mol e-) transferred in a redox process. In this study, the CDAC of 48 individual antioxidants commonly found in foods has been determined. The molar ratio CDAC (CDACχ, mol e- mol-1) of representative antioxidants is ranked as follows: tannic acid > malvidin-3-O-glucoside ≃ curcumin > quercetin > catechin ≃ ellagic acid > gallic acid > tyrosol > BHT ≃ hydroxytyrosol > chlorogenic acid ≃ ascorbic acid ≃ Trolox®. In many cases, the CDACχ ranking of the flavonoids did not comply with the structural motifs that promote electron or hydrogen atom transfers, known as the Bors criteria. As an accurate esteem of the stoichiometric coefficients for reactions of antioxidants with Br2, the CDACχ provides insights into the structure-activity relationships underlying (electro)chemical reactions. The electrochemical ratio (ER), defined as the antioxidant capacity of individual compounds relative to ascorbic acid, represents a dimensionless nutritional index that can be used to estimate the antioxidant power of any foods on an additive basis.
Collapse
Affiliation(s)
- Francesco Siano
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy; (F.S.); (O.F.)
| | - Anna Sofia Sammarco
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.S.S.); (T.C.)
| | - Olga Fierro
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy; (F.S.); (O.F.)
| | - Domenico Castaldo
- Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA), Azienda Speciale CCIAA di Reggio Calabria, Via G. Tommasini 2, 89125 Reggio Calabria, Italy;
- Ministero delle Imprese e del Made in Italy, Via Molise 2, 00187 Roma, Italy
- Dipartimento di Ingegneria Industriale e ProdAl Scarl, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Tonino Caruso
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.S.S.); (T.C.)
| | - Gianluca Picariello
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy; (F.S.); (O.F.)
| | - Ermanno Vasca
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.S.S.); (T.C.)
| |
Collapse
|
13
|
Berga M, Logviss K, Lauberte L, Paulausks A, Mohylyuk V. Flavonoids in the Spotlight: Bridging the Gap between Physicochemical Properties and Formulation Strategies. Pharmaceuticals (Basel) 2023; 16:1407. [PMID: 37895878 PMCID: PMC10610233 DOI: 10.3390/ph16101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Flavonoids are hydroxylated polyphenols that are widely distributed in plants with diverse health benefits. Despite their popularity, the bioavailability of flavonoids is often overlooked, impacting their efficacy and the comparison of products. The study discusses the bioavailability-related physicochemical properties of flavonoids, with a focus on the poorly soluble compounds commonly found in dietary supplements and herbal products. This review sums up the values of pKa, log P, solubility, permeability, and melting temperature of flavonoids. Experimental and calculated data were compiled for various flavonoid subclasses, revealing variations in their physicochemical properties. The investigation highlights the challenges posed by poorly soluble flavonoids and underscores the need for enabling formulation approaches to enhance their bioavailability and therapeutic potential. Compared to aglycones, flavonoid glycosides (with sugar moieties) tend to be more hydrophilic. Most of the reviewed aglycones and glycosides exhibit relatively low log P and high melting points, making them "brick dust" candidates. To improve solubility and absorption, strategies like size reduction, the potential use of solid dispersions and carriers, as well as lipid-based formulations have been discussed.
Collapse
Affiliation(s)
| | | | | | | | - Valentyn Mohylyuk
- Laboratory of Finished Dosage Forms, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|
14
|
Ahmed HS, Abouzeid H, Mansour MA, Owis AI, Amin E, Darwish HW, Alanazi AS, Naguib IA, Afifi N. Antioxidant and Anti-Aging Phytoconstituents from Faucaria tuberculosa: In Vitro and In Silico Studies. Molecules 2023; 28:6895. [PMID: 37836738 PMCID: PMC10574154 DOI: 10.3390/molecules28196895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Research targeting natural cosmeceuticals is now increasing due to the safety and/or limited side effects of natural products that are highly valued in cosmetology. Within a research program exploring botanical sources for valuable skincare antioxidant components, the current study investigated the phytochemical content and the biological potential of Faucaria tuberculosa. Phytochemical investigation of F. tuberculosa extract resulted in purification and characterization of six phytoconstituents, including a new one. The structure of the new constituent was elucidated as (-) catechin-(2→1',4→2')-phloroglucinol (4). The structural identity of all isolated compounds were confirmed on the basis of extensive physical and spectral (1D, 2D-NMR and HRESIMS) investigations. The ethanolic extract exhibits a rich content of total phenolics (TPC) and total flavonoids (TFC), estimated as 32 ± 0.034 mg GAE/g and 43 ± 0.004 mg RE/g, respectively. In addition, the antioxidant (ABTS and FRAP), antihyaluronidase and antityrosinase activities of all purified phytoconstituents were evaluated. The results noted (-) catechin-(2→1',4→2') phloroglucinol (4) and phloroglucinol (1) for their remarkable antioxidant activity, while isorhamnetin 3-O-rutinoside (3) and 3,5-dihydroxyphenyl β-D-glucopyranoside (2) achieved the most potent inhibitory activity against tyrosinase (IC50 22.09 ± 0.7 µM and 29.96 ± 0.44 µM, respectively) and hyaluronidase enzymes (IC50 49.30 ± 1.57 µM and 62.58 ± 0.92, respectively) that remarkably exceeds the activity of the standard drugs kojic acid (IC50 = 65.21 ± 0.47 µM) and luteolin, (IC50 = 116.16 ± 1.69 µM), respectively. A molecular docking study of the two active compounds (3 and 2) highlighted their high potential to bind to the active sites of the two enzymes involved in the study.
Collapse
Affiliation(s)
- Hayam S. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt (A.I.O.)
| | - Hala Abouzeid
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Mostafa A. Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Asmaa I. Owis
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt (A.I.O.)
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo 11785, Egypt
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt (A.I.O.)
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ashwag S. Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Naglaa Afifi
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt (A.I.O.)
| |
Collapse
|
15
|
Aodah AH, Balaha MF, Jawaid T, Khan MM, Ansari MJ, Alam A. Aegle marvels (L.) Correa Leaf Essential Oil and Its Phytoconstituents as an Anticancer and Anti- Streptococcus mutans Agent. Antibiotics (Basel) 2023; 12:835. [PMID: 37237738 PMCID: PMC10215268 DOI: 10.3390/antibiotics12050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Aegle mamelons (A. marmelos) or Indian Bael leaves possess anti-cancerous and antibacterial properties and are used in the traditional medicine system for the treatment of oral infections. In the present study, the essential oil of the leaves of A. marmelos was explored for its anticancer, antioxidant, and anti-cariogenic properties. The hydro-distilled oil of A. marmelos leaves was analyzed using gas chromatography coupled with mass spectrometry (GC-MS). Monoterpene limonene (63.71%) was found to have the highest percentage after trans-2-Hydroxy-1,8-cineole and p-Menth-2,8-dien-1-ol. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was used to investigate the anticancer activity of the extracted oil against human oral epidermal carcinoma (KB), and the results showed significantly higher (**** p < 0.0001) anticancer activity (45.89%) in the doxorubicin (47.87%) when compared to the normal control. The antioxidant activity of the essential oil was evaluated using methods of DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)). The results showed a significant (*** p < 0.001) percentage of inhibition of DPPH-induced free radical (70.02 ± 1.6%) and ABTS-induced free radical (70.7 ± 1.32%) at 100 µg/mL with IC50, 72.51 and 67.33 µg/mL, respectively, comparatively lower than standard compound ascorbic acid. The results of the molecular docking study of the significant compound limonene with the receptors tyrosinase and tyrosine kinase 2 supported the in vitro antioxidant potential. The anti-cariogenic activity was evaluated against Streptococcus mutans (S. mutans). Results showed a significant minimum inhibitor concentration of 0.25 mg/mL and the killing time was achieved at 3 to 6 h. The molecular-docking study showed that limonene inhibits the surface receptors of the S. mutans c-terminal domain and CviR protein. The study found that A. marmelos leaves have potential anti-carcinoma, antioxidant, and anti-cariogenic effects on human oral epidermal health, making them a valuable natural therapeutic agent for managing oral cancer and infections.
Collapse
Affiliation(s)
- Alhussain H. Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.A.)
| | - Mohamed F. Balaha
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Mohammed Moizuddin Khan
- Department of Basic Medical Sciences, College of Medicine, Dar Al Uloom University, Riyadh 13314, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.A.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
16
|
Cytotoxicity and Biomineralization Potential of Flavonoids Incorporated into PNVCL Hydrogels. J Funct Biomater 2023; 14:jfb14030139. [PMID: 36976063 PMCID: PMC10058549 DOI: 10.3390/jfb14030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to evaluate the effects of flavonoids incorporated into poly(N-vinylcaprolactam) (PNVCL) hydrogel on cell viability and mineralization markers of odontoblast-like cells. MDPC-23 cells were exposed to ampelopsin (AMP), isoquercitrin (ISO), rutin (RUT) and control calcium hydroxide (CH) for evaluation of cell viability, total protein (TP) production, alkaline phosphatase (ALP) activity and mineralized nodule deposition by colorimetric assays. Based on an initial screening, AMP and CH were loaded into PNVCL hydrogels and had their cytotoxicity and effect on mineralization markers determined. Cell viability was above 70% when MDPC-23 cells were treated with AMP, ISO and RUT. AMP showed the highest ALP activity and mineralized nodule deposition. Extracts of PNVCL+AMP and PNVCL+CH in culture medium (at the dilutions of 1/16 and 1/32) did not affect cell viability and stimulated ALP activity and mineralized nodules’ deposition, which were statistically higher than the control in osteogenic medium. In conclusion, AMP and AMP-loaded PNVCL hydrogels were cytocompatible and able to induce bio-mineralization markers in odontoblast-cells.
Collapse
|
17
|
Johnsen PR, Pinna C, Mattio L, Strube MB, Di Nunzio M, Iametti S, Dallavalle S, Pinto A, Frøkiær H. Investigation of the Effects of Monomeric and Dimeric Stilbenoids on Bacteria-Induced Cytokines and LPS-Induced ROS Formation in Bone Marrow-Derived Dendritic Cells. Int J Mol Sci 2023; 24:ijms24032731. [PMID: 36769058 PMCID: PMC9917081 DOI: 10.3390/ijms24032731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Stilbenoids are anti-inflammatory and antioxidant compounds, with resveratrol being the most investigated molecule in this class. However, the actions of most other stilbenoids are much less studied. This study compares five monomeric (resveratrol, piceatannol, pterostilbene, pinostilbene, and trimethoxy-resveratrol) and two dimeric (dehydro-δ-viniferin and trans-δ-viniferin) stilbenoids for their capability to modulate the production of bacteria-induced cytokines (IL-12, IL-10, and TNF-α), as well as lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), in murine bone marrow-derived dendritic cells. All monomeric species showed dose-dependent inhibition of E. coli-induced IL-12 and TNF-α, whereas only resveratrol and piceatannol inhibited IL-10 production. All monomers, except trimethoxy-resveratrol, inhibited L. acidophilus-induced IL-12, IL-10, and TNF-α production. The dimer dehydro-δ-viniferin remarkably enhanced L. acidophilus-induced IL-12 production. The contrasting effect of resveratrol and dehydro-δ-viniferin on IL-12 production was due, at least in part, to a divergent inactivation of the mitogen-activated protein kinases by the two stilbenoids. Despite having moderate to high total antioxidant activity, dehydro-δ-viniferin was a weak inhibitor of LPS-induced ROS formation. Conversely, resveratrol and piceatannol potently inhibited LPS-induced ROS formation. Methylated monomers showed a decreased antioxidant capacity compared to resveratrol, also depending on the methylation site. In summary, the immune-modulating effect of the stilbenoids depends on both specific structural features of tested compounds and the stimulating bacteria.
Collapse
Affiliation(s)
- Peter Riber Johnsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| | - Cecilia Pinna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Luce Mattio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Mathilde Bech Strube
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-02-5031-6819
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| |
Collapse
|
18
|
Ongay KK, Granato D, Barreto GE. Comparison of Antioxidant Capacity and Network Pharmacology of Phloretin and Phlorizin against Neuroinflammation in Traumatic Brain Injury. Molecules 2023; 28:molecules28030919. [PMID: 36770586 PMCID: PMC9919876 DOI: 10.3390/molecules28030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Neuroinflammation is a hallmark of traumatic brain injury (TBI)'s acute and chronic phases. Despite the medical and scientific advances in recent years, there is still no effective treatment that mitigates the oxidative and inflammatory damage that affects neurons and glial cells. Therefore, searching for compounds with a broader spectrum of action that can regulate various inflammatory signaling pathways is of clinical interest. In this study, we determined not only the in vitro antioxidant capacity of apple pomace phenolics, namely, phlorizin and its metabolite, phloretin, but we also hypothesize that the use of these bioactive molecules may have potential use in TBI. We explored the antioxidant effects of both compounds in vitro (DPPH, iron-reducing capacity (IRC), and Folin-Ciocalteu reducing capacity (FCRC)), and using network pharmacology, we investigated the proteins involved in their protective effects in TBI. Our results showed that the antioxidant properties of phloretin were superior to those of phlorizin in the DPPH (12.95 vs. 3.52 mg ascorbic acid equivalent (AAE)/L), FCRC (86.73 vs. 73.69 mg gallic acid equivalent (GAE)/L), and iron-reducing capacity (1.15 vs. 0.88 mg GAE/L) assays. Next, we examined the molecular signature of both compounds and found 11 proteins in common to be regulated by them and involved in TBI. Meta-analysis and GO functional enrichment demonstrated their implication in matrix metalloproteinases, p53 signaling, and cell secretion/transport. Using MCODE and Pearson's correlation analysis, a subcluster was generated. We identified ESR1 (estrogen receptor alpha) as a critical cellular hub being regulated by both compounds and with potential therapeutic use in TBI. In conclusion, our study suggests that because of their vast antioxidant effects, probably acting on estrogen receptors, phloretin and phlorizin may be repurposed for TBI treatment due to their ease of obtaining and low cost.
Collapse
Affiliation(s)
| | - Daniel Granato
- Correspondence: (D.G.); (G.E.B.); Tel.: +353-(0)-61-202676 (G.E.B)
| | | |
Collapse
|
19
|
Tao Y, Zhang H, Wang Y. Revealing and predicting the relationship between the molecular structure and antioxidant activity of flavonoids. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Huang X, Wu Y, Zhang S, Yang H, Wu W, Lyu L, Li W. Overexpression of RuFLS2 Enhances Flavonol-Related Substance Contents and Gene Expression Levels. Int J Mol Sci 2022; 23:ijms232214230. [PMID: 36430708 PMCID: PMC9699159 DOI: 10.3390/ijms232214230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As an emerging third-generation fruit, blackberry has high nutritional value and is rich in polyphenols, flavonoids and anthocyanins. Flavonoid biosynthesis and metabolism is a popular research topic, but no related details have been reported for blackberry. Based on previous transcriptome data from this research group, two blackberry flavonol synthase genes were identified in this study, and the encoded proteins were subjected to bioinformatics analysis. RuFLS1 and RuFLS2 are both hydrophobic acidic proteins belonging to the 2OG-Fe(II) dioxygenase superfamily. RuFLS2 was expressed at 27.93-fold higher levels than RuFLS1 in red-purple fruit by RNA-seq analysis. Therefore, RuFLS2-overexpressing tobacco was selected for functional exploration. The identification of metabolites from transgenic tobacco showed significantly increased contents of flavonoids, such as apigenin 7-glucoside, kaempferol 3-O-rutinoside, astragalin, and quercitrin. The high expression of RuFLS2 also upregulated the expression levels of NtF3H and NtFLS in transgenic tobacco. The results indicate that RuFLS2 is an important functional gene regulating flavonoid biosynthesis and provides an important reference for revealing the molecular mechanism of flavonoid accumulation in blackberry fruit.
Collapse
Affiliation(s)
- Xin Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
- Correspondence: (Y.W.); (W.L.); Tel.: +86-25-8434-7022 (Y.W.); +86-25-8542-8513 (W.L.)
| | - Shanshan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (Y.W.); (W.L.); Tel.: +86-25-8434-7022 (Y.W.); +86-25-8542-8513 (W.L.)
| |
Collapse
|
21
|
Kim JH, Duan S, Lim YJ, Eom SH. Changes in Quercetin Derivatives and Antioxidant Activity in Marigold Petals ( Tagetes patula L.) Induced by Ultraviolet-B Irradiation and Methyl Jasmonate. PLANTS (BASEL, SWITZERLAND) 2022; 11:2947. [PMID: 36365399 PMCID: PMC9656713 DOI: 10.3390/plants11212947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Marigold petals contain numerous antioxidative flavonoids and carotenoids that can be affected by environmental stressors. There is yet no detailed study on the relationship between phytochemical accumulation and stressors in marigold petals. This study evaluated quercetin derivatives and antioxidant activity in marigold petals in response to ultraviolet-B (UV-B) irradiation and methyl jasmonate (MeJA) treatment. The limiting UV-B radiation intensity and MeJA dose that caused no wilting damage under 1-h daily treatment for 10 days were <2 W∙m−2∙s−1 and <10 mM, respectively. Marigold petals contained three major flavonoids, quercetin-7-O-glucoside (Q7G, 6.6 mg∙g−1dw), quercetin-3-O-glucoside (Q3G, 62.7 mg), and quercetin (26.6 mg), possessing different antioxidant potential and exhibiting the highest power in quercetin and next value in Q7G. Single UV-B irradiation exerted a limited effect on the changes in the content of the three quercetin derivatives, whereas combined treatment with 1 W UV-B radiation and 5 mM MeJA resulted in the highest total quercetin content, showing >20% increase compared to that without treatment. This increase primarily resulted in an increase in quercetin content. MeJA treatment positively affected the increase in Q3G and Q7G contents in a dose-dependent manner during the 10-d experimental period but exerted no considerable effect on quercetin accumulation. The antioxidant activity was increased when flowers were exposed to mild MeJA treatment of 5−10 mM. UV-B irradiation decreased the antioxidant activity of marigold petals, but this decrease could be compensated by MeJA treatment.
Collapse
|
22
|
Sustainable Dyeing and Functionalization of Different Fibers Using Orange Peel Extract’s Antioxidants. Antioxidants (Basel) 2022; 11:antiox11102059. [DOI: 10.3390/antiox11102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
A diluted ethanol orange peel extract was used for sustainable dyeing and functionalization of different fabrics. The extract analysis was performed using UPLC-ESI-MS/MS; its total flavonoid (0.67 g RE/100 g d.w.) and antioxidant (2.81 g GAE/100 g d.w.) contents and antioxidant activity (IC50 of 65.5 µg/mL) were also determined. The extract dyeing performance at various dyebath pH values was evaluated using multifiber fabric. Among six fabrics, extract possessed the ability for dyeing wool, polyamide, and cellulose acetate (at pH 4.5), which color strength (K/S) values increased after washing (9.7–19.8 vs. 11.6–23.2). Extract:water ratio of 20:35 (v/v) was found to be sufficient for achieving satisfactory K/S values (i.e., 20.17, 12.56, and 10.38 for wool, polyamide, and cellulose acetate, respectively) that were slightly changed after washing. The optimal dyeing temperatures for wool, polyamide, and cellulose acetate are 55, 35, and 25 °C, while the equilibrium dye exhaustion at those temperatures was achieved after 45, 120, and 90 min, respectively. The color coordinate measurements revealed that wool and polyamide fabrics are yellower than cellulose acetate, while, compared to polyamide and cellulose acetate, wool is redder. Possible interactions between selected fabrics and extract compounds are suggested. All fabrics possessed excellent antioxidant activity (88.6–99.6%) both before and after washing. Cellulose acetate provided maximum bacterial reduction (99.99%) for Escherichia coli, and Staphylococcus aureus, which in the case of Staphylococcus aureus remained unchanged after washing. Orange peel extract could be used for simultaneous dyeing and functionalization of wool and polyamide (excellent antioxidant activity) and cellulose acetate (excellent antioxidant and antibacterial activity) fabrics.
Collapse
|
23
|
Macías-Garbett R, Sosa-Hernández JE, Iqbal HMN, Contreras-Esquivel JC, Chen WN, Melchor-Martínez EM, Parra-Saldívar R. Combined Pulsed Electric Field and Microwave-Assisted Extraction as a Green Method for the Recovery of Antioxidant Compounds with Electroactive Potential from Coffee Agro-Waste. PLANTS 2022; 11:plants11182362. [PMID: 36145763 PMCID: PMC9505628 DOI: 10.3390/plants11182362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022]
Abstract
Coffee agro-waste is a potential source of polyphenols with antioxidant activity and application in the food and cosmetic trades. The usage of these byproducts persists as a challenge in the industrial landscape due to their high content of purported toxic substances hindering management. This study presents a green extractive process using pulsed electric field (PEF) and microwave assisted extraction (MAE) to recover polyphenols from coffee parchment and two varieties of pulp, posing quick processing times and the use of water as the only solvent. The performance of this process with regard to the bioactivity was assessed through the Folin-Ciocalteu assay, total flavonoid content, DPPH, ABTS and FRAP antioxidant tests. The phenolic composition of the extracts was also determined through HPLC-MS and quantified through HPLC-DAD. When compared to treatment controls, PEF + MAE treated samples presented enhanced yields of total phenolic content and radical scavenging activity in all analyzed residues (Tukey test significance: 95%). The chromatographic studies reveal the presence of caffeic acid on the three analyzed by-products. The HPLC-DAD caffeic acid quantification validated that a combination of MAE + PEF treatment in yellow coffee pulp had the highest caffeic acid concentration of all studied extraction methods.
Collapse
Affiliation(s)
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (E.M.M.-M.); (R.P.-S.)
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (E.M.M.-M.); (R.P.-S.)
| |
Collapse
|
24
|
Chromatographic Profile and Redox-Modulating Capacity of Methanol Extract from Seeds of Ginkgo biloba L. Originating from Plovdiv Region in Bulgaria. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060878. [PMID: 35743909 PMCID: PMC9228083 DOI: 10.3390/life12060878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress underlies the pathogenesis of many diseases, which determines the interest in natural substances with antioxidant properties. Ginkgo biloba L. leaves are well known and widely used in the pharmaceutical industry, but the therapeutic properties of the seeds are less studied. This study aimed to identify the chromatographic profile and to evaluate the antioxidant properties of methanol extract from seeds of G. biloba (GBSE). In the GBSE, flavonoids and terpenes were found as terpenes predominated. The GBSE antioxidant capacity determined by 2,2 azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) and 1-diphenyl-2-picrylhydrazyl (DPPH) methods were equal to 1.34% and 0.58% of the activity of reference substance Trolox, respectively. The results of the ferric reducing antioxidant power method showed that the effect of concentration 1 mg/mL (w/v) GBSE was equal to 7.418 mM FeSO4 used as a standard. The cupric reducing antioxidant capacity activity of the GBSE was found to be 215.39 µmol Trolox/g GBSE and is presented as Trolox equivalent. The metal chelation effect of 1 mg/mL (w/v) GBSE was equal to that obtained for 0.018 mM EDTA. In conclusion, GBSE showed a good ability to neutralize ABTS and DPPH radicals and could have a beneficial effect in pathological conditions with oxidative stress etiology.
Collapse
|
25
|
Mbikay M, Chrétien M. Isoquercetin as an Anti-Covid-19 Medication: A Potential to Realize. Front Pharmacol 2022; 13:830205. [PMID: 35308240 PMCID: PMC8924057 DOI: 10.3389/fphar.2022.830205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
Isoquercetin and quercetin are secondary metabolites found in a variety of plants, including edible ones. Isoquercetin is a monoglycosylated derivative of quercetin. When ingested, isoquercetin accumulates more than quercetin in the intestinal mucosa where it is converted to quercetin; the latter is absorbed into enterocytes, transported to the liver, released in circulation, and distributed to tissues, mostly as metabolic conjugates. Physiologically, isoquercetin and quercetin exhibit antioxidant, anti-inflammatory, immuno-modulatory, and anticoagulant activities. Generally isoquercetin is less active than quercetin in vitro and ex vivo, whereas it is equally or more active in vivo, suggesting that it is primarily a more absorbable precursor to quercetin, providing more favorable pharmacokinetics to the latter. Isoquercetin, like quercetin, has shown broad-spectrum antiviral activities, significantly reducing cell infection by influenza, Zika, Ebola, dengue viruses among others. This ability, together with their other physiological properties and their safety profile, has led to the proposition that administration of these flavonols could prevent infection by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), or arrest the progression to severity and lethality of resulting coronavirus disease of 2019 (Covid-19). In silico screening of small molecules for binding affinity to proteins involved SARS-CoV-2 life cycle has repeatedly situated quercetin and isoquercetin near to top of the list of likely effectors. If experiments in cells and animals confirm these predictions, this will provide additional justifications for the conduct of clinical trials to evaluate the prophylactic and therapeutic efficacy of these flavonols in Covid-19.
Collapse
Affiliation(s)
- Majambu Mbikay
- Functional Endoproteolysis Laboratory, Montreal Clinical Research Institute, Montreal, QC, Canada
| | - Michel Chrétien
- Functional Endoproteolysis Laboratory, Montreal Clinical Research Institute, Montreal, QC, Canada
| |
Collapse
|
26
|
Gervasi T, Calderaro A, Barreca D, Tellone E, Trombetta D, Ficarra S, Smeriglio A, Mandalari G, Gattuso G. Biotechnological Applications and Health-Promoting Properties of Flavonols: An Updated View. Int J Mol Sci 2022; 23:1710. [PMID: 35163632 PMCID: PMC8835978 DOI: 10.3390/ijms23031710] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Flavonols are a subclass of natural flavonoids characterized by a remarkable number of biotechnological applications and health-promoting properties. They attract researchers' attention due to many epidemiological studies supporting their usage. They are phytochemicals commonly present in our diet, being ubiquitous in the plant kingdom and, in particular, relatively very abundant in fruits and vegetables. All these aspects make flavonols candidates of choice for the valorization of products, based on the presence of a remarkable number of different chemical structures, each one characterized by specific chemical features capable of influencing biological targets inside the living organisms in very different manners. In this review, we analyzed the biochemical and physiological characteristics of flavonols focalizing our attention on the most promising compounds to shed some light on their increasing utilization in biotechnological applications in processing industries, as well as their suitable employment to improve the overall wellness of the humankind.
Collapse
Affiliation(s)
- Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Giuseppe Gattuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| |
Collapse
|
27
|
Lamar RT, Monda H, Sleighter R. Use of Ore-Derived Humic Acids With Diverse Chemistries to Elucidate Structure-Activity Relationships (SAR) of Humic Acids in Plant Phenotypic Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:758424. [PMID: 34925408 DOI: 10.3389/fpls.2021.758424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
For legal reasons, the publisher has withdrawn this article from public view. For additional information, please contact the publisher.
Collapse
Affiliation(s)
| | - Hiarhi Monda
- Bio Huma Netics, Inc., Gilbert, AZ, United States
| | | |
Collapse
|
28
|
Kurnia D, Ajiati D, Heliawati L, Sumiarsa D. Antioxidant Properties and Structure-Antioxidant Activity Relationship of Allium Species Leaves. Molecules 2021; 26:7175. [PMID: 34885755 PMCID: PMC8659087 DOI: 10.3390/molecules26237175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
Allium is a genus that is widely consumed and used as traditional medicine in several countries. This genus has two major species, namely cultivated species and wild species. Cultivated species consist of A. cepa L., A. sativum L., A. fistulosum L. and A. schoenoprasum L. and wild species consist of A. ursinum L., A. flavum L., A. scorodoprasum L., A. vineale L. and A. atroviolaceum Boiss. Several studies report that the Allium species contain secondary metabolites such as polyphenols, flavonoids and tannins and have bioactivity such as antioxidants, antibacterial, antifungal, anti-inflammatory, pancreatic α-amylase, glucoamylase enzyme inhibitors and antiplatelets. This review summarizes some information regarding the types of Allium species (ethnobotany and ethnopharmacology), the content of compounds of Allium species leaves with various isolation methods, bioactivities, antioxidant properties and the structure-antioxidant activity relationship (SAR) of Allium compounds.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.S.)
| | - Dwipa Ajiati
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.S.)
| | - Leny Heliawati
- Study Program of Chemistry, Faculty of Mathematics and Natural Science, Universitas Pakuan, Bogor 16143, Indonesia;
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.S.)
| |
Collapse
|
29
|
Ha SH, Kang HK, Hosseindoust A, Mun JY, Moturi J, Tajudeen H, Lee H, Cheong EJ, Kim JS. Effects of Scopoletin Supplementation and Stocking Density on Growth Performance, Antioxidant Activity, and Meat Quality of Korean Native Broiler Chickens. Foods 2021; 10:foods10071505. [PMID: 34209795 PMCID: PMC8305197 DOI: 10.3390/foods10071505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Stocking density stress is one of the most common management stressors in the poultry industry. The present study was designed to investigate the effect of dietary Sophora koreensis (SK; 0 and 20 mg/kg diet) and stocking density (SD; 14 and 16 chickens/m2) on the antioxidant status, meat quality, and growth performance of native Korean chickens. There was a lower concentration of malondialdehyde (MDA) and a higher concentration of catalase, superoxide dismutase (SOD), and total antioxidant capacity in the serum and leg muscle with the supplementation of SK. The concentration of MDA was increased and concentrations of SOD were decreased in the leg muscle of chickens in low SD treatments. The SK-supplemented treatments showed an increased 3-ethylbenzothiazoline-6-sulfonate-reducing activity of leg muscles. The higher water holding capacity of breast muscle and a lower cooking loss and pH were shown in the SK-supplemented treatments. The addition of dietary SK resulted in a greater body weight gain and greater spleen and bursa Fabricius weight, as well as lower feed intake and abdominal fat. The low SD and supplementation of SK increased the concentrations of cholesterol. The concentration of glucose was increased in the low SD treatment. Corticosterone level was decreased in the SK-supplemented and low SD treatments. In conclusion, SK supplementation reduced the oxidative stress and increased meat quality and antioxidant status of chickens apart from the SD stress.
Collapse
Affiliation(s)
- Sang Hun Ha
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (S.H.H.); (A.H.); (J.Y.M.); (J.M.); (H.T.)
| | - Hwan Ku Kang
- Poultry Research Institute, National Institute of Animal Science, Pyeongchang 25342, Korea;
| | - Abdolreza Hosseindoust
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (S.H.H.); (A.H.); (J.Y.M.); (J.M.); (H.T.)
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon 24341, Korea
| | - Jun Young Mun
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (S.H.H.); (A.H.); (J.Y.M.); (J.M.); (H.T.)
| | - Joseph Moturi
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (S.H.H.); (A.H.); (J.Y.M.); (J.M.); (H.T.)
| | - Habeeb Tajudeen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (S.H.H.); (A.H.); (J.Y.M.); (J.M.); (H.T.)
| | - Hwa Lee
- Department of Forest Environmental System, Kangwon National University, Chuncheon 24341, Korea;
| | - Eun Ju Cheong
- Department of Forest Environmental System, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (E.J.C.); (J.S.K.)
| | - Jin Soo Kim
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (S.H.H.); (A.H.); (J.Y.M.); (J.M.); (H.T.)
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (E.J.C.); (J.S.K.)
| |
Collapse
|