1
|
Soulaimani B, Abbad I, Dumas E, Gharsallaoui A. Enhanced antimicrobial and biofilm disruption efficacy of the encapsulated Thymus pallidus and Lavandula stoechas essential oils and their mixture: A synergistic approach. Int J Pharm 2025; 670:125144. [PMID: 39734057 DOI: 10.1016/j.ijpharm.2024.125144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
The antimicrobial and antibiofilm properties of plant essential oils (EOs) have aroused significant interest for their potential as effective alternatives or supplements in combating microbial infections and biofilm-associated challenges. For these applications, EOs must be encapsulated to overcome some key technical limitations, including high volatility, poor stability, and low solubility. This study aimed to develop microencapsulated EOs derived from two valuable Moroccan medicinal plants, Lavandula stoechas L. and Thymus pallidus Batt., both individually and in combination, using the spray drying method. The antimicrobial and antibiofilm effects of these encapsulated EOs were evaluated against various pathogenic microorganisms using microdilution and crystal violet assays. Key physico-chemical characteristics of the EO microcapsules, including optimal particle size, favorable zeta potential, low water content, and high encapsulation yield and efficiency were observed, indicating strong stability and effective encapsulation. The major chemical compounds identified in the studied EOs were thymol (26.72 %), γ-terpinene (23.26 %), and p-cymene (19.07 %) in T. pallidus EO; and camphor (47.67 %), fenchone (20.78 %), and 1.8-cineole (12.17 %) in L. stoechas EO. The results from antimicrobial assays demonstrated that the encapsulated T. pallidus EO exhibited stronger inhibitory and microbicidal effects against all tested strains, with MIC and MMC values ranging from 0.312 mg/mL to 2.50 mg/mL. The encapsulated EOs combination demonstrated interesting antimicrobial effect, with varying type of interactions depending on the target microorganisms. Additionally, the antibiofilm activity of the microencapsulated EOs combination, evaluated against Staphylococcus aureus, Klebsiella pneumoniae and Bacillus subtilis, showed significant biofilm inhibition with percentages reaching up to 92.68 % at MIC concentration and BIC50 ranging from 0.05 ± 0.00 mg/mL to 0.17 ± 0.01 mg/mL. The eradication of preformed biofilms was also measured, showing a notable effect with eradication rates exceeding 78 % at concentrations of 4MIC, and BEC50 values ranging from 0.16 ± 0.02 mg/mL to 1.30 ± 0.37 mg/mL. Overall, these finding indicate that the encapsulated EO combination derived from these two Moroccan medicinal plants presents a promising formulation capable of overcoming the limitations associated with free EOs and contributing to the fight against antimicrobial resistance and biofilm-related challenges.
Collapse
Affiliation(s)
- Bouchra Soulaimani
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco.
| | - Imane Abbad
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Emilie Dumas
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR, 5007 Villeurbanne, France
| | - Adem Gharsallaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR, 5007 Villeurbanne, France
| |
Collapse
|
2
|
Jaime-Báez R, Saldo J, González-Soto RA. Comparison of Gamma-Oryzanol Nanoemulsions Fabricated by Different High Energy Techniques. Foods 2024; 13:2256. [PMID: 39063338 PMCID: PMC11275623 DOI: 10.3390/foods13142256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Gamma-oryzanol (GO) is a bioactive compound that, due to its biological characteristics, can be added to a food matrix. However, the bioactive compound is difficult to incorporate due to its low solubility and stability. A nanoemulsion allows substances to be packaged in nanometric sizes, improving their bioavailability. In this work, a GO nanoemulsion was developed using high-energy techniques. The methodological process began with the formulation of the coarse emulsion, where the emulsifiers (sodium caseinate and citrus pectin), diluent (rice bran oil), and pH were varied to find the most stable formulation. The coarse emulsion was subjected to four high-energy techniques (conventional homogenization, high-pressure homogenization, ultra-high-pressure homogenization, and ultrasonication) to reduce the droplet size. A physical-stability test, rheological-behavior test, image analysis, and particle-size-and-distribution test were conducted to determine which was the best technique. The formulation with the highest stability (pH 5.3) was composed of 87% water, 6.1% sodium caseinate, 0.6% citrus pectin, 6.1% rice bran oil, and 0.2% GO. The ultrasonic treatment obtains the smallest particle size (30.1 ± 1 nm), and the high-pressure treatment obtains the greatest stability (TSI < 0.3), both at 0 and 7 days of storage. High-energy treatments significantly reduce the droplet size of the emulsion, with important differences between each technique.
Collapse
Affiliation(s)
- Rodrigo Jaime-Báez
- Departamento de Desarrollo Tecnológico, Centro de Desarrollo de Productos Bióticos (CEPROBI), Instituto Politécnico Nacional (IPN), Yautepec 62730, Mexico
- Centre de Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), MALTA Consolider Team, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Jordi Saldo
- Centre de Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), MALTA Consolider Team, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Centro de Investigación de Alimentos (CIAL), Facultad de Ingeniería, Universidad UTE, Quito 170147, Ecuador
| | - Rosalía América González-Soto
- Centre de Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), MALTA Consolider Team, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| |
Collapse
|
3
|
Hadidi M, Aghababaei F, Gonzalez-Serrano DJ, Goksen G, Trif M, McClements DJ, Moreno A. Plant-based proteins from agro-industrial waste and by-products: Towards a more circular economy. Int J Biol Macromol 2024; 261:129576. [PMID: 38253140 DOI: 10.1016/j.ijbiomac.2024.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| | | | - Diego J Gonzalez-Serrano
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28816 Stuhr, Germany; CENCIRA Agrofood Research and Innovation Centre, Ion Mester 6, 400650 Cluj-Napoca, Romania
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01002, United States
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
4
|
Barańska A, Michalska-Ciechanowska A, Wojdyło A, Mykhailyk VA, Korinchevska TV, Samborska K. Carriers based on dairy by-products and dehumidified-air spray drying as a novel multiple approach towards improved retention of phenolics in powders: sour cherry juice concentrate case study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1497-1510. [PMID: 37804151 DOI: 10.1002/jsfa.13033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Sour cherry juice concentrate powder can serve as a modern, easy-to-handle, phenolics-rich merchandise; however, its transformation into powdered form requires the addition of carriers. In line with the latest trends in food technology, this study valorizes the use of dairy by-products (whey protein concentrate, whey, buttermilk, and mixes with maltodextrin) as carriers. A new multiple approach for higher drying yield, phenolics retention (phenolic acids, flavonols and anthocyanins) and antioxidant capacity of powders were tested as an effect of simultaneous decrease of drying temperature due to the drying air dehumidification and lower carrier content. RESULTS Dairy-based carriers were effective for spray drying of sour cherry-juice concentrate. The drying yield was increased and retention of phenolics was higher when compared with maltodextrin. The application of dehumidified air, which enabled the drying temperature to be reduced, affected drying yield positively, and also affected particle morphology and retention of phenolics (the phenolic content was approximately 30% higher than with spray drying). CONCLUSIONS The study proved that it is possible to apply dairy-based by-products to produce sour cherry juice concentrate powders profitably, lowering the spray-drying temperature and changing the carrier content. Dehumidified air spray drying can be recommended for the production of fruit juice concentrate powders with improved physicochemical properties. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alicja Barańska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Anna Michalska-Ciechanowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Viacheslav A Mykhailyk
- Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana V Korinchevska
- Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Katarzyna Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
5
|
Aghababaei F, Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel) 2023; 16:1020. [PMID: 37513932 PMCID: PMC10384403 DOI: 10.3390/ph16071020] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin, a flavonoid found in fruits and vegetables, has been a part of human diets for centuries. Its numerous health benefits, including antioxidant, antimicrobial, anti-inflammatory, antiviral, and anticancer properties, have been extensively studied. Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage. Quercetin's anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes, making it a potential therapeutic agent for various inflammatory conditions. It also exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis. Finally, quercetin has cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function, making it a promising candidate for preventing and treating cardiovascular diseases. This review provides an overview of the chemical structure, biological activities, and bioavailability of quercetin, as well as the different delivery systems available for quercetin. Incorporating quercetin-rich foods into the diet or taking quercetin supplements may be beneficial for maintaining good health and preventing chronic diseases. As research progresses, the future perspectives of quercetin appear promising, with potential applications in nutraceuticals, pharmaceuticals, and functional foods to promote overall well-being and disease prevention. However, further studies are needed to elucidate its mechanisms of action, optimize its bioavailability, and assess its long-term safety for widespread utilization.
Collapse
Affiliation(s)
- Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, UAB-Campus, 08193 Bellaterra, Spain
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
6
|
Edible oil to powder technologies: Concepts and advances. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
7
|
Varela C, Aghababaei F, Cano-Sarabia M, Turitich L, Trujillo AJ, Ferragut V. Characterization and oxidation stability of spray-dried emulsions with omega-3 oil and buttermilk processed by ultra-high-pressure homogenization (UHPH). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Liu T, Gao Z, Zhong W, Fu F, Li G, Guo J, Shan Y. Preparation, Characterization, and Antioxidant Activity of Nanoemulsions Incorporating Lemon Essential Oil. Antioxidants (Basel) 2022; 11:antiox11040650. [PMID: 35453335 PMCID: PMC9025020 DOI: 10.3390/antiox11040650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
Lemon essential oil (LEO) is a kind of citrus essential oil with antioxidant, anti-inflammatory, and antimicrobial activities, but low water solubility and biological instability hinder its industrial application. In this study, LEO was nanoemulsified to solve these problems. The preparation procedure of lemon essential oil nanoemulsions (LEO-NEs) was optimized, and the physicochemical characterization and antioxidant activities were explored. Single-factor experiments (SFEs) and response surface methodology (RSM) were conducted for the effects on the mean droplet size of LEO-NEs. Five factors of SFE which may influence the droplet size were identified: HLB value, concentration of essential oil, concentration of surfactant, ultrasonic power, and ultrasonic time. On the basis of the SFE, the RSM approach was used to optimize the preparation procedure to obtain LEO-NEs with the smallest droplet size. LEO-NEs exhibited good antioxidant activity when the HLB value was 13, content of surfactant was 0.157 g/mL, ultrasonic time was 23.50 min, and ultrasonic power was 761.65 W. In conclusion, these results can provide a good theoretical basis for the industrial application of lemon essential oil.
Collapse
Affiliation(s)
- Ting Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (T.L.); (F.F.); (G.L.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.G.); (W.Z.)
| | - Weiming Zhong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.G.); (W.Z.)
| | - Fuhua Fu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (T.L.); (F.F.); (G.L.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (T.L.); (F.F.); (G.L.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (T.L.); (F.F.); (G.L.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (J.G.); (Y.S.); Tel.: +86-(0)731-8469-8915 (J.G.); +86-(0)731-8469-1289 (Y.S.)
| | - Yang Shan
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (T.L.); (F.F.); (G.L.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (J.G.); (Y.S.); Tel.: +86-(0)731-8469-8915 (J.G.); +86-(0)731-8469-1289 (Y.S.)
| |
Collapse
|
9
|
CHEN Y, Jiahong XV, YUAN F. Curcumin-loaded nano-emulsion prepared by high pressure homogenization: impact of emulsifiers on physicochemical stability and in vitro digestion. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.115121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yulu CHEN
- China Agricultural University, China
| | | | - Fang YUAN
- China Agricultural University, China
| |
Collapse
|
10
|
Changes in oxidative stability and phytochemical contents of microencapsulated wheat germ oil during accelerated storage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|