1
|
Dur S, Mir NA, Ganaie TA. Controlled ethanol-mediated polyphenol removal from sunflower meal: Impact on physicochemical, structural, flow-behavior, and functional characteristics of isolated proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1385-1397. [PMID: 39324374 DOI: 10.1002/jsfa.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Polyphenols present in sunflower meal act on sunflower proteins by reacting directly with their structures and thus influencing their purity, solubility, crystallinity, and functionality. However, the effect on these properties of varying concentrations of ethanol used in dephenolization has yet to be explored. The present study aimed to explore the impact of dephenolization using varying ethanol concentrations (60%, 70%, 80%, and 90%) on the physicochemical, color, thermal, structural, functional, and flow behavior of protein isolates extracted from sunflower meal. RESULTS Protein isolates originating from meals that were dephenolized using higher ethanol concentrations exhibited a protein content of 836.10 g kg-1. As the concentration of ethanol increased, a reduction in crystallinity was observed from 24% to 14.15%. Fourier transform infrared (FTIR) spectroscopy revealed marked shifts in major peaks within the 1600 to 1700 cm-1 wavelength range, indicating significant structural and conformational changes. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results demonstrated that dephenolization caused decline in molecular weight ranging from 25 kDa to 60 kDa. Dephenolization induced significant changes in surface morphology resulting in more heterogeneous and disordered surfaces as indicated by field emission-scanning electron microscopy (FE-SEM) micrographs. Overall improvement in the functional properties was observed, with an increase in solubility from 15.20% to 22.03%. Improvement in the flow behavior with an increase in porosity from 38% to 60% was also observed, due to dephenolization. CONCLUSION Dephenolization using 90% ethanol induced structural changes that enhanced physicochemical and functional characteristics of sunflower protein isolates by improving purity and solubility, reducing crystallinity, and increasing flow behavior. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sadaf Dur
- Department of Food Technology, School of Engineering and Technology, Islamic University of Science and Technology, Awantipora, India
| | - Nisar A Mir
- Department of Food Technology, School of Engineering and Technology, Islamic University of Science and Technology, Awantipora, India
| | - Tariq Ahmad Ganaie
- Department of Food Technology, School of Engineering and Technology, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
2
|
Wu X, Zhang B, Li H, Zhao M, Wu W. The synergistic effects of rice bran rancidity and dephenolization on digestive properties of rice bran protein. Food Chem 2024; 460:140617. [PMID: 39067385 DOI: 10.1016/j.foodchem.2024.140617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Both rice bran (RB) rancidity and dephenolization could affect the structural characteristics and phenolics composition of rice bran protein (RBP), thereby affecting RBP digestibility. The synergistic effects of RB rancidity and dephenolization on RBP digestibility were investigated. Excessive RB rancidity (RB stored for 10 d) and non-dephenolization reduced RBP digestibility, while moderate RB rancidity (RB stored for 1 d) combined with dephenolization improved RBP digestibility to a maximum of 74.19%. Dephenolization reduced the antioxidant capacities of RBP digestive products. The digestibility of non-dephenolized RBP (NDRBP) was significantly (P < 0.05) related with its carbonyl content, surface hydrophobicity, and ζ-potential. The digestibility of dephenolized RBP (DRBP) was significantly related with its β-sheet structure content, surface hydrophobicity, ζ-potential, and average particle size. Overall, moderate RB rancidity combined with dephenolization enhanced RBP digestibility by reducing the non-competitive inhibition of endogenous phenolics on protease and regulating the spatial structural characteristics of RBP.
Collapse
Affiliation(s)
- Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Benpeng Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Helin Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Mengmeng Zhao
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
3
|
Chen C, Liu Z, Xiong W, Yao Y, Li J, Wang L. Effect of alkaline treatment duration on rapeseed protein during pH-shift process: Unveiling physicochemical properties and enhanced emulsifying performance. Food Chem 2024; 459:140280. [PMID: 38991445 DOI: 10.1016/j.foodchem.2024.140280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
This study aims to investigate the influence of alkaline treatment duration (0-5 h) on the physicochemical properties and emulsifying performance of rapeseed protein during pH-shift process. Results showed that a 4-h alkaline treatment significantly reduced the particle size of rapeseed protein and led to a notable decrease in disulfide bond content, as well as alterations in subunit composition. Moreover, solubility of rapeseed protein increased from 18.10 ± 0.13% to 40.44 ± 1.74% post-treatment, accompanied by a ∼ 40% enhancement in emulsifying properties. Morphological analysis revealed superior plasticity and sharper contours in 4-h alkali-treated rapeseed protein emulsions compared to untreated counterparts. Rheological analysis indicated higher viscosity and elasticity in the alkali-treated group. Overall, 4-h alkaline treatment markedly enhanced the multifaceted functional attributes of rapeseed protein during pH-shift process, rendering it a promising emulsifier in the food industry.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, 210023, China
| | - Zihua Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, 210023, China
| | - Wenfei Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, 210023, China
| | - Yijun Yao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, 210023, China
| | - Jing Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, 210023, China
| | - Lifeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
4
|
Chen Y, Tao X, Hu S, He R, Ju X, Wang Z, Aluko RE. Effects of phytase/ethanol treatment on aroma characteristics of rapeseed protein isolates. Food Chem 2024; 431:137119. [PMID: 37572486 DOI: 10.1016/j.foodchem.2023.137119] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
This study investigates enhancing the flavor of rapeseed protein isolate (RPI), a protein-rich substance with an unfavorable taste, through phytase/ethanol treatment. Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS) analysis identified 268 volatile compounds in RPI. The study found that this treatment significantly altered the content of these compounds, reducing sourness and enhancing sweetness and fruitiness. The analysis also showed that the treatment notably increased the relative odor activity values (ROAVs) of key aroma compounds, improving RPI's flavor. Sensory evaluation confirmed the positive impact of the treatment, indicating its potential to make RPI a more acceptable ingredient in the food industry.
Collapse
Affiliation(s)
- Yao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xuan Tao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Shengqing Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xingrong Ju
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhigao Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
5
|
Can Karaca A, Assadpour E, Jafari SM. Plant protein-based emulsions for the delivery of bioactive compounds. Adv Colloid Interface Sci 2023; 316:102918. [PMID: 37172542 DOI: 10.1016/j.cis.2023.102918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Emulsion-based delivery systems (EBDSs) can be used as effective carriers for bioactive compounds (bioactives). Recent studies have shown that plant proteins (PLPs) have the potential to be utilized as stabilizers of emulsions for loading, protection and delivery of bioactives. Different strategies combining physical, chemical and biological techniques can be applied for alteration of the structural characteristics and improving the emulsification and encapsulation performance of PLPs. The stability, release, and bioavailability of the encapsulated bioactives can be tailored via optimizing the processing conditions and formulation of the emulsions. This paper presents cutting-edge information on PLP-based emulsions carrying bioactives in terms of their preparation methods, physicochemical characteristics, stability, encapsulation efficiency and release behavior of bioactives. Strategies applied for improvement of emulsifying and encapsulation properties of PLPs used in EBDSs are also reviewed. Special emphasis is given to the use of PLP-carbohydrate complexes for stabilizing bioactive-loaded emulsions.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
6
|
Zhang H, Zhao X, Chen X, Xu X. Thoroughly review the recent progresses in improving O/W interfacial properties of proteins through various strategies. Front Nutr 2022; 9:1043809. [DOI: 10.3389/fnut.2022.1043809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Along with the future food market developing world widely, the personalized nutrition and rational function food design are found to be urgently attracted. Oil in a water (O/W) emulsion system has an excellent ability to maintain nutraceuticals and thus plays a promising role in producing future functional foods. Understanding the interfacial related mechanisms involved are essential for improving the quality of food products. Protein can effectively reduce interfacial tension and stable immiscible phases. The interfacial properties of proteins directly affect the emulsion qualities, which have gradually become a prospective topic. This review will first briefly discuss the interfacial-related fundamental factors of proteins. Next, the paper thoroughly overviewed current physical and chemical strategies tailored to improving the interfacial and emulsion properties of proteins. To be summarized, a higher flexibility could allow protein to be more easily unfolded and adsorbed onto the interface but could also possibly form a softer interfacial film. Several physical strategies, such as thermal, ultrasound and especially high-pressure homogenization are well applied to improve the interfacial properties. The interfacial behavior is also altered by various green chemical strategies, such as pH adjustment, covalent modification, and low molecular weight (LMW) surfactant addition. These strategies upgraded emulsion properties by increasing adsorption load, accelerating diffusion and adsorption rate, associated with lowering interfacial tension, and promoting interfacial protein interactions. Future researches targeted at elucidating interfacial-bulk protein interactions, unraveling interfacial behavior through in silico tools, exploring connection between interfacial-industrial processing properties, and clarifying the interfacial-sensory-digestive relationships of O/W emulsions is needed to develop emulsion applications.
Collapse
|
7
|
Zhang B, Li H, Li F, Zhou Q, Wu X, Wu W. Effects of rice bran phenolics on the structure of rice bran protein under different degrees of rancidity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|