1
|
Manjunatha N, Pokhare SS, Agarrwal R, Singh NV, Sharma J, Harsur MM, Marathe RA. Possible biocontrol of bacterial blight in pomegranate using native endophytic Bacillus spp. under field conditions. Front Microbiol 2024; 15:1491124. [PMID: 39723149 PMCID: PMC11668753 DOI: 10.3389/fmicb.2024.1491124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Bacterial blight in pomegranate, caused by Xanthomonas citri pv. punicae (Xcp), is one of the most devastating diseases, leading to substantial economic losses in pomegranate production. Methods for blight management in pomegranate production are scarce and not well established. To date, the major control strategy is targeting the pathogen with antibiotics and copper-based compounds. However, excessive use of antibiotics has resulted in the development of antibiotic resistance in the field population of Xcp. Hence, as a means of eco-friendly and sustainable management of bacterial blight, the use of native endophytes was investigated under field conditions in the current study. Endophytic bacteria were isolated from micro-propagated nodal explants of pomegranate and were identified as Bacillus haynesii, B. tequilensis, and B. subtilis. They were found to produce volatiles that inhibited Xcp growth during in vitro antibiosis assay. GC-MS-based volatile profiling revealed the presence of several bioactive compounds with reported antimicrobial activities. These endophytes (CFU of 108/mL) were then spray-inoculated on leaves of 6-month-old pomegranate plants in the polyhouse. They were found to induce ROS-scavenging enzymes such as catalase and peroxidase. This alteration was a manifestation of host tissue colonization by the endophytes as ROS scavenging is one of the mechanisms by which endophytes colonize the host plants. Furthermore, two-season field trials with endophytes for blight control resulted in a reduction of disease index by 47-68%, which was considerably higher than the reduction due to the chemical immune modulator (2-bromo-2-nitro-1, 3-propanediol) currently being recommended for blight control. In addition, these endophytes also exhibited reduced sensitivity to this immune modulator; thus, the current study advocates the use of B. haynesii, B. subtilis, and B. tequilensis as biocontrol agents for bacterial blight of pomegranate either alone or as a part of integrated disease management.
Collapse
|
2
|
Demircan B, Velioglu YS. Improving fresh-cut fruit salad quality and longevity with chitosan coating enriched with poppy seed phenolics. Food Sci Nutr 2024; 12:3696-3713. [PMID: 38726399 PMCID: PMC11077256 DOI: 10.1002/fsn3.4040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 05/12/2024] Open
Abstract
This innovative study introduces the application of a 5% (v/v) poppy seed phenolic extract-infused edible chitosan coating on fresh-cut fruit salads (comprising apple, pineapple, pomegranate, and kiwi) stored at +4°C for 12 days. Non-coated samples experienced notable changes: 4.30% weight loss, 25% decay, pH level at 3.59, titratable acidity of 0.18%, and browning index of 1.71. In contrast, fruit salads coated with chitosan-poppy seed phenolic extract exhibited significant improvements: weight loss reduced to 3.10%, decay limited to 3.13%, pH increased to 3.76, titratable acidity enhanced to 0.20%, and browning index notably decreased to 0.33. Soluble solids ranged from 11.83 to 14.71, L* from -8.13 to 18.64, a* from -1.85 to 22.35, and b* from 8.26 to 27.89 in non-coated salads. Adding poppy seed phenolic extract to the coated fruits slightly expanded these ranges. Sensory evaluations consistently rated non-coated samples between 1 and 3, while the coated samples received higher ratings between 6 and 7. These assessments consistently highlighted enhanced attributes, including intensified aroma, enriched color, improved taste, texture, and overall acceptability. Moreover, incorporating poppy seed phenolic extract amplified sensory qualities and significantly improved microbial safety (<106 CFU/g). In summary, the chitosan-based coating, enriched with poppy seed phenolic extract, effectively extended the shelf life of fresh-cut fruit salads. This integrated approach preserves key attributes, ensures microbial quality, and enhances the sensory characteristics of these products. The study's results emphasize its potential as a pivotal innovation in food preservation by providing specific and tangible outcomes.
Collapse
Affiliation(s)
- Bahar Demircan
- Department of Food EngineeringAnkara UniversityAnkaraTurkey
| | | |
Collapse
|
3
|
Demircan B, Velioglu YS. Control of Browning, Enzyme Activity, and Quality in Stored Fresh-cut Fruit Salads through Chitosan Coating Enriched with Bergamot Juice Powder. Foods 2024; 13:147. [PMID: 38201175 PMCID: PMC10779034 DOI: 10.3390/foods13010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, fresh-cut fruit salads composed of apples, pears, kiwis, and pineapples were stored at +4 °C for 18 days under distinct conditions: non-coated (NC), chitosan-coated (CH), and bergamot juice powder extract-enriched chitosan-coated (CHBE). Storage endpoint decay percentages were as follows: NC group: 100%, CH group: 26.67-53.3%, CHBE group: 13.33-26.67%. CHBE had the highest moisture content (87.05-89.64%), soluble solids (12.40-13.26%), and chroma values (2.35-6.60). CHBE and NC groups had 2.10% and 6.61% weight loss, respectively. The NC group had the highest polyphenol oxidase activity (19.48 U mL-1) and browning index (0.70 A420/g); CH group: 0.85 U mL-1, 0.35 A420/g; CHBE group: 0.57 U mL-1, 0.27 A420/g. CHBE showed a titratable acidity of 1.33% and pH 3.73 post-storage, impeding microbial proliferation with the lowest counts (2.30-3.24 log CFU g-1). The microbial suitability of the NC group diminished after day 6, with an overall preference score of 1.00. Conversely, the CH and CHBE groups scored 3.15 and 4.56, highlighting the coatings' effectiveness. Bergamot juice powder extract further enhanced this, mitigating browning and enhancing quality. Results reveal tailored coatings' potential to extend shelf life, improve quality, and enhance fruit salads' acceptability. This study underscores the importance of edible coatings in addressing preservation challenges, emphasizing their role in enhancing food quality and consumer acceptability. Incorporating edible coatings is pivotal in mitigating deterioration issues and ensuring the overall success of fresh-cut fruit products in the market.
Collapse
Affiliation(s)
| | - Yakup Sedat Velioglu
- Department of Food Engineering, Ankara University, 06850 Golbasi, Ankara, Turkey;
| |
Collapse
|
4
|
Díaz-Mula HM, López JP, Serrano M, Pretel MT. A New Ready-to-Eat Product Based on Enzymatically Peeled 'Hernandina' Clementine Segments and Citrus Syrup. Foods 2023; 12:3977. [PMID: 37959096 PMCID: PMC10647611 DOI: 10.3390/foods12213977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Ready-to-eat fresh fruit have an increasing presence in international markets due to their convenience and health benefits. However, these products are highly perishable and efficient technologies to increase their shelf life are needed. In the present research, different citrus fruit species and cultivars from organic farming were assessed to obtain enzymatically peeled citrus segments. The best results in terms of segment quality were observed for 'Hernandina' clementine, which was chosen to make a new ready-to-eat product based on peeled citrus segments that were packaged in glass jars with a light syrup made of citrus juice and organic sugar cane. Different citrus juice mixtures were assayed and the most appreciated syrup, based on the sensory scores given by panellists, was that containing 50-50 (v/v) of 'Fino' lemon and 'Hernandina' clementine juices. In addition, different pasteurization treatments were assessed for their effects on conserving the safety, nutritional quality and sensory properties of the product during cold storage. The results show that pasteurization treatment at 50 °C for 45 min was sufficient to prevent microbial contamination with mesophilic and psychrophilic aerobic bacteria or yeast and mould and to maintain sensory properties until five weeks of storage at 4 °C. In addition, only a 10% reduction in vitamin C concentrations was observed in fresh-segments or syrup until the end of the storage period, showing that a high bioactive compound content and health benefits were conserved in the new ready-to-eat product after pasteurization and prolonged cold storage.
Collapse
Affiliation(s)
- Huertas M. Díaz-Mula
- Department of Biología Aplicada, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain; (H.M.D.-M.); (J.P.L.); (M.S.)
- Instituto Universitario de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - Juan P. López
- Department of Biología Aplicada, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain; (H.M.D.-M.); (J.P.L.); (M.S.)
| | - María Serrano
- Department of Biología Aplicada, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain; (H.M.D.-M.); (J.P.L.); (M.S.)
- Instituto Universitario de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - María T. Pretel
- Department of Biología Aplicada, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain; (H.M.D.-M.); (J.P.L.); (M.S.)
| |
Collapse
|
5
|
Exploring the Potential of Pomegranate Peel Extract as a Natural Food Additive: A Review. Curr Nutr Rep 2023:10.1007/s13668-023-00466-z. [PMID: 36920686 DOI: 10.1007/s13668-023-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE OF THE REVIEW Pomegranate is one of the super fruit and a storehouse of several antioxidants and health-promoting compounds which can act as a natural food additive. The pomegranate processing industry generates huge quantities of by-products, particularly peels (50% of fresh fruit weight), that cause environmental pollution due to improper disposal. In this perspective, the present review article focuses on the chemical composition of pomegranate peel and its application as a natural food additive in different food products such as bakery, dairy, meat/meat products, fish/fish products, edible oils, and packaging materials. RECENT FINDINGS There is a continuous demand for processed foods exhibiting natural food additives over foods containing synthetic additives/colorants, which can cause serious health implications such as cancer with regular consumption. The food industry is looking for an alternative to synthetic/artificial food additives. To overcome these problems, pomegranate peel or its extract can be used as a natural biopreservative in food products that are prone to fat oxidation and microbial growth. Pomegranate peel contains bioactive compounds, especially tannins, phenolic acids, and flavonoids, which have nutraceutical value and possess higher antioxidant activity and antimicrobial properties. Due to these properties, pomegranate peel prevents lipid oxidation in fatty foods and can also retard the microbial growth.
Collapse
|
6
|
Pomegranate Peel Powder: In Vitro Efficacy and Application to Contaminated Liquid Foods. Foods 2023; 12:foods12061173. [PMID: 36981100 PMCID: PMC10048077 DOI: 10.3390/foods12061173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
In this study the recycling of pomegranate peel powder (PPP) was proposed. In particular, the use of powder loaded in a silk fibroin polymeric matrix to create an active pad was tested. For the sake of comparison, the powder alone was also analysed. Both powder and active pad efficacy was assessed in two different food systems, soymilk (rich in proteins), preliminarily contaminated with Pseudomonas spp. and yeasts, and apple juice (rich in carbohydrates), preliminarily contaminated with Alyciclobacillus acidoterrestris. Three different concentrations of powder alone and powder in the pad were tested (5%, 7.5% and 10% w/v) in both types of beverages. To assess a possible dependence of the efficacy on the powder granulometry, different powder sizes were preliminarily analysed on Pseudomonas spp. and yeasts using an in vitro test. PPP was effective on both Pseudomonas spp. and yeasts. No significant differences appeared among the tested granulometries and therefore in the subsequent tests powder with an average diameter of 250 µm was used. Results recorded with soymilk and apple juice were different. When applied to the soymilk, the activity of PPP in the pad was less effective than that recorded when the powder was directly added to the beverage. With the two highest powder concentrations directly added to food, more than four log cycle reductions in Pseudomonas spp. and yeast cells were recorded, compared to soymilk without any powder. Compared to the control sample, all the soymilk samples either with PPP or with the active pad showed a delayed microbial and fungal growth. When applied to apple juice, both powder and pad were effective at completely inhibiting the proliferation of A. acidoterrestris (<102 CFU/g).
Collapse
|
7
|
Lacivita V, Marziliano M, Del Nobile MA, Conte A. Artisanal fresh filled pasta with pomegranate peels as natural preservative. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Characterization of Alternaria and Colletotrichum Species Associated with Pomegranate (Punica granatum L.) in Maharashtra State of India. J Fungi (Basel) 2022; 8:jof8101040. [PMID: 36294605 PMCID: PMC9604645 DOI: 10.3390/jof8101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Fungal pathogens are a major constraint affecting the quality of pomegranate production around the world. Among them, Alternaria and Colletotrichum species cause leaf spot, fruit spot or heart rot (black rot), and fruit rot (anthracnose) or calyx end rot, respectively. Accurate identification of disease-causing fungal species is essential for developing suitable management practices. Therefore, characterization of Alternaria and Colletotrichum isolates representing different geographical regions, predominantly Maharashtra-the Indian hub of pomegranate production and export-was carried out. Fungal isolates could not be identified based on morphological characteristics alone, hence were subjected to multi-gene phylogeny for their accurate identification. Based on a maximum likelihood phylogenetic tree, Alternaria isolates were identified as within the A. alternata species complex and as A. burnsii, while Colletotrichum isolates showed genetic closeness to various species within the C. gloeosporioides species complex. Thus, the current study reports for the first time that, in India, the fruit rots of pomegranate are caused by multiple species and not a single species of Alternaria and Colletotrichum alone. Since different species have different epidemiology and sensitivity toward the commercially available and routinely applied fungicides, the precise knowledge of the diverse species infecting pomegranate, as provided by the current study, is the first step towards devising better management strategies.
Collapse
|
9
|
Cano-Lamadrid M, Martínez-Zamora L, Castillejo N, Artés-Hernández F. From Pomegranate Byproducts Waste to Worth: A Review of Extraction Techniques and Potential Applications for Their Revalorization. Foods 2022; 11:foods11172596. [PMID: 36076782 PMCID: PMC9455765 DOI: 10.3390/foods11172596] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The food industry is quite interested in the use of (techno)-functional bioactive compounds from byproducts to develop ‘clean label’ foods in a circular economy. The aim of this review is to evaluate the state of the knowledge and scientific evidence on the use of green extraction technologies (ultrasound-, microwave-, and enzymatic-assisted) of bioactive compounds from pomegranate peel byproducts, and their potential application via the supplementation/fortification of vegetal matrixes to improve their quality, functional properties, and safety. Most studies are mainly focused on ultrasound extraction, which has been widely developed compared to microwave or enzymatic extractions, which should be studied in depth, including their combinations. After extraction, pomegranate peel byproducts (in the form of powders, liquid extracts, and/or encapsulated, among others) have been incorporated into several food matrixes, as a good tool to preserve ‘clean label’ foods without altering their composition and improving their functional properties. Future studies must clearly evaluate the energy efficiency/consumption, the cost, and the environmental impact leading to the sustainable extraction of the key bio-compounds. Moreover, predictive models are needed to optimize the phytochemical extraction and to help in decision-making along the supply chain.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, Espinardo, 30071 Murcia, Spain
| | - Noelia Castillejo
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
- Correspondence: ; Tel.: +34-968325509
| |
Collapse
|
10
|
Nardella S, Conte A, Del Nobile MA. State-of-Art on the Recycling of By-Products from Fruits and Vegetables of Mediterranean Countries to Prolong Food Shelf Life. Foods 2022; 11:foods11050665. [PMID: 35267298 PMCID: PMC8909788 DOI: 10.3390/foods11050665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Annually, 1.3 billion tons of food are wasted and this plays a major role in increasing pollution. Food waste increases domestic greenhouse gas emissions mainly due to the gas emissions associated with its production. Fruit and vegetable industrial by-products occur in the form of leaves, peel, seeds, pulp, as well as a mixture of them and represent the most abundant food waste. The disposal of agricultural by-products costs a large amount of money under certain governmental regulations. However, fruit and vegetable by-products are rich in valuable bioactive compounds, thus justifying their use as food fortifier, active food packaging or as food ingredients to preserve food quality over time. The present review collects the most recent utilization carried out at lab-scale on Mediterranean fruit and vegetable by-products as valid components to prolong food shelf life, providing a detailed picture of the state-of-art of literature on the topic. Bibliographic research was conducted by applying many keywords and filters in the last 10 years. Several scientific findings demonstrate that by-products, and in particular their extracts, are effectively capable of prolonging the shelf life of dairy food, fresh-cut produce, meat and fish-based products, oil, wine, paste and bakery products. All of the studies provide clear advances in terms of food sustainability, highlight the potential of by-products as a source of bioactive compounds, and promote a culture in which foods are intended to receive a second useful life. The same final considerations were also included regarding the current situation, which still limits by-products diffusion. In addition, a conclusion on a future perspective for by-products recycling was provided. The most important efforts have to be conducted by research since only a multidisciplinary approach for an advantageous investigation could be an efficient method to promote the scale up of by-products and encourage their adoption at the industrial level.
Collapse
|
11
|
Zero-Waste Approach Applied to Pomegranates for Prolonging Fish Burger Shelf Life. Foods 2022; 11:foods11040551. [PMID: 35206027 PMCID: PMC8871030 DOI: 10.3390/foods11040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, the possibility of using whole pomegranate (juice, peel and seeds) according to the zero-waste approach, to prolong fresh fish shelf life, was evaluated. A preliminary antimicrobial in vitro test was carried out with peel and seeds as ground and re-ground powders. Then, the entire fruit, in the right proportions of juice and relative by-products as ground or re-ground powders, was added to fresh fish burger formulation to extend its shelf life. To this aim, a shelf-life test was performed on fortified fish products stored at 4 °C. Control samples were also tested for comparison. Specifically, the pH and microbiological and sensory quality of all the fish burgers were monitored during refrigerated storage for about 1 month. The results from the in vitro test clearly indicate that the peel is abundantly more effective than seeds on selected spoilage bacteria and that the ground peel powder is slightly more antimicrobial than the same re-ground powder. Results from the shelf-life test assessed that the control sample became unacceptable within a few days (about 3 days), while the samples with pomegranate juice and by-products maintained microbial stability for a longer time (2 or 3 weeks) (p < 0.05). The main microbiological problems are the proliferations of mesophilic and psychrotrophic bacteria, Pseudomonas spp. and Shewanella. The addition of pomegranate to the formulation allowed the fish spoilage to be controlled by at least 2 or 3 log cycles. In agreement with findings from the in vitro test, the best results from the microbiological point of view were found in fish burgers with juice, peel and seed ground powders. Furthermore, the addition of pomegranate was also appreciated from the sensorial point of view. In fact, products with pomegranate were prized for about 3 weeks for color, odor, appearance and texture of both raw and cooked products. Therefore, the current study reveals that the incorporation of the entire pomegranate, added in all parts according to the zero-waste concept, could promote a significant shelf-life extension of fish burgers, mainly due to the bioactive compounds present in fruit by-products, without changing the sensory quality.
Collapse
|