1
|
Georgantopoulos A, Kalousi FD, Pollastro F, Tsialtas I, Kalogiouri NP, Psarra AMG. Chemical Analysis and Antioxidant Activities of Resin Fractions from Pistacia lentiscus L. var. Chia in Neuroblastoma SH-SY5Y Cells. Molecules 2025; 30:997. [PMID: 40076222 PMCID: PMC11901618 DOI: 10.3390/molecules30050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Chios mastiha is the natural aromatic resin of Pistacia lentiscus L. var. Chia, Anacardiaceae, which is exclusively cultivated in the southern part of the Greek island of Chios. Chios mastiha (P. lenticonus/Chios mastiha) is well-known for its distinctive taste and aroma and has been known since ancient times due to its healing properties in gastrointestinal and inflammatory disorders and because of its anti-bacterial and anti-fungal activities. In this study, the chemical composition, applying LC-QTOF-MS/MS analysis, and the antioxidant activities of three different polarity P. lenticonus/Chios mastiha fractions, apolar, medium polar, and polar, were characterized in human neuroblastoma SH-SY5Y cells. Chemical analysis of the fractions unveiled new components of P. lenticonus/Chios mastiha, mainly fatty acids compounds, known for their antioxidant activity and regulatory effects on lipid metabolism. By applying the MTT assay and confocal microscopy analysis, we showed that P. lenticonus/Chios mastiha fractions, especially the apolar and medium polar fractions, enriched in triterpenes and fatty acids, caused suppression of the H2O2-induced reduction in cell viability, ROS production, and depolarization of the mitochondrial membrane potential, in SH-SY5Y cells. Moreover, Western blot analysis revealed that apolar fraction, enriched in fatty acids, induced expression of the PPARα, which is well-known for its antioxidant activities and its crucial role in lipid metabolism. Induction of PPARα, a GR target gene, was also accompanied by an increase in GR protein levels. Enhanced antioxidant activities of the apolar fraction may be correlated with its chemical composition, enriched in fatty acids and triterpenoids. Thus, our results indicate the neuroprotective actions of P. lenticonus/Chios mastiha fractions, highlighting their potential application as neuroprotective agents in neurodegenerative diseases.
Collapse
Affiliation(s)
- Achilleas Georgantopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (F.D.K.); (I.T.)
| | - Foteini D. Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (F.D.K.); (I.T.)
| | - Federica Pollastro
- Department of Pharmaceutical, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Ioannis Tsialtas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (F.D.K.); (I.T.)
| | - Natasa P. Kalogiouri
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anna-Maria G. Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (F.D.K.); (I.T.)
| |
Collapse
|
2
|
Gonçalves J, Hontman N, Perestrelo R, Câmara JS. A Comparative Study of the Biological Properties of Eugenia uniflora L. Fruits and Leaves Related to the Prevention of Cardiovascular Diseases. Life (Basel) 2025; 15:147. [PMID: 40003556 PMCID: PMC11856808 DOI: 10.3390/life15020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death globally, emphasizing the need for effective preventive strategies. Plant-based foods, rich in phytochemicals, offer a promising potential in CVD prevention. This study investigated the antioxidant, anti-inflammatory, and antihypertensive properties of two Eugenia uniflora L. varieties (orange and purple pitanga) and their leaves. Their antioxidant activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity assays, while their antihypertensive activity was evaluated through angiotensin-converting enzyme (ACE) inhibition. Their anti-inflammatory potential was determined via protein denaturation inhibition. Both fruit varieties exhibited similar bioactivities, with the purple variety showing a slightly higher activity, except in the DPPH and ABTS assays. The leaves consistently demonstrated the lowest activities across all assays. Free polyphenols, dominated by gallic acid, were quantified using µ-QuEChERS followed by ultrahigh-performance liquid chromatography (UHPLC-PDA). The orange variety contained the highest concentration of gallic acid (13.1 mg/100 g DW). These findings highlight the potential of Eugenia uniflora L. extracts as natural antioxidant, anti-inflammatory, and antihypertensive agents, suggesting their value in food, pharmaceutical, and cosmetic applications for promoting human health and preventing CVDs.
Collapse
Affiliation(s)
- Jéssica Gonçalves
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (J.G.); (N.H.); (R.P.)
| | - Nance Hontman
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (J.G.); (N.H.); (R.P.)
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (J.G.); (N.H.); (R.P.)
| | - José S. Câmara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (J.G.); (N.H.); (R.P.)
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
3
|
Shanmugavadivu A, Selvamurugan N. Surface engineering of 3D-printed polylactic acid scaffolds with polydopamine and 4-methoxycinnamic acid-chitosan nanoparticles for bone regeneration. NANOSCALE ADVANCES 2025:d4na00768a. [PMID: 39886612 PMCID: PMC11776148 DOI: 10.1039/d4na00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
Bone remodeling, a continuous process of resorption and formation, is essential for maintaining skeletal integrity and mineral balance. However, in cases of critical bone defects where the natural bone remodeling capacity is insufficient, medical intervention is necessary. Traditional bone grafts have limitations such as donor site morbidity and availability, driving the search for bioengineered scaffold alternatives. The choice of biomaterial is crucial in scaffold design, as it provides a substrate that supports cell adhesion, proliferation, and differentiation. Poly-lactic acid (PLA) is known for its biocompatibility and biodegradability, but its hydrophobicity hinders cell attachment and tissue regeneration. To enhance PLA's bioactivity, we fabricated 3D-printed PLA scaffolds using fused deposition modelling. They were then surface-treated with NaOH to increase their reactivity, followed by polydopamine (PDA) and 4-methoxycinnamic acid (MCA)-loaded chitosan nanoparticle (nCS) coatings though polyelectrolyte complexation. Even though MCA, a polyphenolic, is known for its therapeutic properties, its osteogenic potential is not yet known. MCA treatment in mouse mesenchymal stem cells (mMSCs) promoted increased levels of Runx2 mRNA, a key bone transcription factor. Due to MCA's hydrophobic nature, nCS were used as carriers. The PLA/PDA/nCS-MCA scaffolds exhibited exceptional compressive strength and bioactivity. Biocompatibility tests confirmed that these scaffolds were non-cytotoxic to mMSCs. Overall, this study highlights the osteogenic potential of MCA and demonstrates the improved biocompatibility, bioactivity, wettability, and cell adhesion properties of the PDA/nCS-MCA-coated PLA scaffolds, positioning it as a promising material for bone tissue regeneration.
Collapse
Affiliation(s)
- Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India
| |
Collapse
|
4
|
Xiang Y, Mao L, Dai ZH, Liu XH, Yang ZB. Neuroprotective Effect of Benzyl Ferulate on Ischemia/Reperfusion Injury via Regulating NOX2 and NOX4 in Rats: A Potential Antioxidant for CI/R Injury. Adv Pharmacol Pharm Sci 2024; 2024:5534135. [PMID: 39524533 PMCID: PMC11550003 DOI: 10.1155/2024/5534135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
Oxidative stress is a primary contributor to cerebral ischemia/reperfusion (CI/R) injury, and the use of antioxidants represents a crucial therapeutic strategy for managing CI/R injury. This study aims to explore the antioxidant effects of benzyl ferulate on CI/R injury and elucidate its underlying mechanisms. In vivo models of CI/R injury and hypoxia/reoxygenation (H/R) injury in SH-SY5Y cells were established, followed by treatment with benzyl ferulate. The extent of oxidative stress was assessed through evaluations of neurobiological function, cerebral infarct volume, reactive oxygen species (ROS), apoptosis levels, etc. Results indicated that benzyl ferulate significantly downregulated the expression of NADPH oxidase 2 (NOX) 2/NOX4 while upregulating miRNAs (652/532/92b) in CI/R rats or SH-SY5Y cells. It also reduced total NOX enzyme activity, enhanced superoxide dismutase (SOD) activity, decreased ROS and malondialdehyde (MDA) production, and inhibited cleaved caspase-3 and Bax expression-ultimately leading to reduced cell apoptosis. Benzyl ferulate effectively mitigates oxidative stress injuries of middle cerebral artery occlusion (MCAO) rats or SH-SY5Y cells subjected to H/R, and its mechanism appears to involve modulation of the miRNAs (652/532/92b)/NOX2/4 axis. This study first proved that benzyl ferulate is a promising antioxidant candidate for treating CI/R injury.
Collapse
Affiliation(s)
- Yu Xiang
- Chest Pain Center of Changsha, The Affiliated Changsha Hospital of Hunan Normal University, Changsha 410006, Hunan, China
| | - Li Mao
- Department of Basic Medicine, Changsha Health Vocational College, Changsha 410600, Hunan, China
| | - Zhao-Hui Dai
- Chest Pain Center of Changsha, The Affiliated Changsha Hospital of Hunan Normal University, Changsha 410006, Hunan, China
| | - Xiao-Hua Liu
- Chest Pain Center of Changsha, The Affiliated Changsha Hospital of Hunan Normal University, Changsha 410006, Hunan, China
| | - Zhong-Bao Yang
- Chest Pain Center of Changsha, The Affiliated Changsha Hospital of Hunan Normal University, Changsha 410006, Hunan, China
| |
Collapse
|
5
|
Qu Z, Zhao S, Zhang Y, Wang X, Yan L. Natural Compounds for Bone Remodeling: Targeting osteoblasts and relevant signaling pathways. Biomed Pharmacother 2024; 180:117490. [PMID: 39332184 DOI: 10.1016/j.biopha.2024.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
In the process of bone metabolism and bone remodeling, bone marrow mesenchymal stem cells (BM-MSCs) differentiate into osteoblasts (OBs) under certain conditions to enable the formation of new bone, and normal bone reconstruction and pathological bone alteration are closely related to the differentiation and proliferation functions of OBs. Osteogenic differentiation of BM-MSCs involves multiple signaling pathways, which function individually but interconnect intricately to form a complex signaling regulatory network. Natural compounds have fewer adverse effects than chemically synthesized drugs, optimize bone health, and are more suitable for long-term use. In this paper, we focus on OBs, summarize the current research progress of signaling pathways related to OBs differentiation, and review the molecular mechanisms by which chemically synthesized drugs with potential anti-osteoporosis properties regulate OBs-mediated bone formation.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Zhang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
6
|
Ali A, Mueed A, Cottrell JJ, Dunshea FR. LC-ESI-QTOF-MS/MS Identification and Characterization of Phenolic Compounds from Leaves of Australian Myrtles and Their Antioxidant Activities. Molecules 2024; 29:2259. [PMID: 38792121 PMCID: PMC11124226 DOI: 10.3390/molecules29102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Phenolic compounds, present in plants, provide substantial health advantages, such as antioxidant and anti-inflammatory properties, which enhance cardiovascular and cognitive well-being. Australia is enriched with a wide range of plants with phytopharmacological potential, which needs to be fully elucidated. In this context, we analyzed leaves of aniseed myrtle (Syzygium anisatum), lemon myrtle (Backhousia citriodora), and cinnamon myrtle (Backhousia myrtifolia) for their complex phytochemical profile and antioxidant potential. LC-ESI-QTOF-MS/MS was applied for screening and characterizing these Australian myrtles' phenolic compounds and the structure-function relation of phenolic compounds. This study identified 145 and quantified/semi-quantified 27 phenolic compounds in these Australian myrtles. Furthermore, phenolic contents (total phenolic content (TPC), total condensed tannins (TCT), and total flavonoids (TFC)) and antioxidant potential of phenolic extracts from the leaves of Australian myrtles were quantified. Aniseed myrtle was quantified with the highest TPC (52.49 ± 3.55 mg GAE/g) and total antioxidant potential than other selected myrtles. Catechin, epicatechin, isovitexin, cinnamic acid, and quercetin were quantified as Australian myrtles' most abundant phenolic compounds. Moreover, chemometric analysis further validated the results. This study provides a new insight into the novel potent bioactive phenolic compounds from Australian myrtles that could be potentially useful for functional, nutraceutical, and therapeutic applications.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (J.J.C.)
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road Jiangxi, Nanchang 330047, China;
| | - Jeremy J. Cottrell
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (J.J.C.)
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (J.J.C.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
7
|
Ali A, Asgher Z, Cottrell JJ, Dunshea FR. Screening and Characterization of Phenolic Compounds from Selected Unripe Fruits and Their Antioxidant Potential. Molecules 2023; 29:167. [PMID: 38202750 PMCID: PMC10779760 DOI: 10.3390/molecules29010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The food sector's interest in sustainability and the demand for novel bioactive compounds are increasing. Many fruits are wasted every year before ripening due to various climatic conditions and harsh weather. Unripe mangoes, grapes, and black lemons could be rich sources of phenolic compounds that need to be fully elucidated. Using fruit waste as a source of bioactive chemicals has grown increasingly appealing as it may have significant economic benefits. Polyphenols are beneficial for human health to inhibit or minimize oxidative stress and can be used to develop functional and nutraceutical food products. In this context, this study aimed to characterize and screen unripe mangoes, grapes, and black lemons for phenolic compounds using LC-ESI-QTOF-MS/MS and their antioxidant activities. Unripe mangoes were quantified with higher total phenolic content (TPC, 58.01 ± 6.37 mg GAE/g) compared to black lemon (23.08 ± 2.28 mg GAE/g) and unripe grapes (19.42 ± 1.16 mg GAE/g). Furthermore, unripe mangoes were also measured with higher antioxidant potential than unripe grapes and black lemons. A total of 85 phenolic compounds (70 in black lemons, 49 in unripe grapes, and 68 in unripe mango) were identified, and 23 phenolic compounds were quantified using LC-MS/MS. Procyanidin B2, gallic acid, epicatechin, caffeic acid, quercetin, and chlorogenic acid were measured with higher concentration in these selected unripe fruits. A positive correlation was found between phenolic contents and the antioxidant activities of unripe fruits. Furthermore, chemometric analysis was conducted to validate the results. This study will explore the utilization of these unripe fruits to develop functional and therapeutic foods.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (Z.A.); (J.J.C.)
| | - Zeshan Asgher
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (Z.A.); (J.J.C.)
| | - Jeremy J. Cottrell
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (Z.A.); (J.J.C.)
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (Z.A.); (J.J.C.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Ojo OA, Ogunlakin AD, Maimako RF, Gyebi GA, Olowosoke CB, Taiwo OA, Elebiyo TC, Adeniyi D, David B, Iyobhebhe M, Adetunji JB, Ayokunle DI, Ojo AB, Mothana RA, Alanzi AR. Therapeutic Study of Cinnamic Acid Derivative for Oxidative Stress Ablation: The Computational and Experimental Answers. Molecules 2023; 28:7425. [PMID: 37959844 PMCID: PMC10648207 DOI: 10.3390/molecules28217425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
This study aimed to examine the therapeutic activity of the cinnamic acid derivative KAD-7 (N'-(2,4-dichlorobenzylidene)-3-(4-methoxyphenyl) acrylohydrazide) on Fe2+-induced oxidative hepatic injury via experimental and computational models. In addition, the role of ATPase and ectonucleoside triphosphate diphosphohydrolase (ENTPDase) in the coordination of cellular signals is speculated upon to proffer suitable therapeutics for metabolic stress disorder upon their inhibition. While we know little about therapeutics with flexible dual inhibitors for these protein targets, this study was designed to screen KAD-7's (N'-(2,4-dichlorobenzylidene)-3-(4-methoxyphenyl) acrylohydrazide) inhibitory potential for both protein targets. We induced oxidative hepatic damage via the incubation of hepatic tissue supernatant with 0.1 mM FeSO4 for 30 min at 37 °C. We achieved the treatment by incubating the hepatic tissues with KAD-7 under the same conditions. The catalase (CAT), glutathione (GSH), malondialdehyde (MDA), ATPase, and ENTPDase activity were all measured in the tissues. We predicted how the drug candidate would work against ATPase and ENTPDase targets using molecular methods. When hepatic injury was induced, there was a significant decrease in the levels of the GSH, CAT, and ENTPDase (p < 0.05) activities. In contrast, we found a noticeable rise in the MDA levels and ATPase activity. KAD-7 therapy resulted in lower levels of these activities overall (p < 0.05), as compared to the control levels. We found the compound to have a strong affinity for ATPase (-7.1 kcal/mol) and ENTPDase (-7.4 kcal/mol), and a better chemical reactivity than quercetin. It also met all drug-likeness parameters. Our study shows that KAD-7 can protect the liver from damage caused by FeSO4 by reducing oxidative stress and purinergic actions. Our studies indicate that KAD-7 could be developed as a therapeutic option since it can flexibly inhibit both ATPase and ENTPDase.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Good Health and Wellbeing Research Cluster, Bowen University, Iwo 232102, Nigeria; (A.D.O.); (D.A.); (B.D.)
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria
| | - Akingbolabo Daniel Ogunlakin
- Good Health and Wellbeing Research Cluster, Bowen University, Iwo 232102, Nigeria; (A.D.O.); (D.A.); (B.D.)
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria
| | - Rotdelmwa Filibis Maimako
- Department of Biochemistry, Landmark University, Omu-Aran 251101, Nigeria; (R.F.M.); (T.C.E.); (M.I.)
| | - Gideon Ampoma Gyebi
- Natural Products and Structural (Bio-Chem)-Informatics Research Laboratory (NpsBC-RI), Department of Biochemistry, Bingham University, Karu 961105, Nigeria;
| | - Christopher Busayo Olowosoke
- Department of Biotechnology, Federal University of Technology, PMB 704 Futa Road, Akure 340252, Nigeria;
- Department of Biotechnology, Chrisland University, Abeokuta 110118, Nigeria
| | | | | | - David Adeniyi
- Good Health and Wellbeing Research Cluster, Bowen University, Iwo 232102, Nigeria; (A.D.O.); (D.A.); (B.D.)
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria
| | - Bolaji David
- Good Health and Wellbeing Research Cluster, Bowen University, Iwo 232102, Nigeria; (A.D.O.); (D.A.); (B.D.)
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria
| | - Matthew Iyobhebhe
- Department of Biochemistry, Landmark University, Omu-Aran 251101, Nigeria; (R.F.M.); (T.C.E.); (M.I.)
| | | | | | - Adebola Busola Ojo
- Department of Biochemistry, Ekiti State University, Ado-Ekiti 362103, Nigeria;
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (R.A.M.); (A.R.A.)
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (R.A.M.); (A.R.A.)
| |
Collapse
|
9
|
Park TG, Kim YR, Park SY, Choi K, Kim KJ, Kim JY. Cinnamon ( Cinnamomum cassia) hot water extract improves inflammation and tight junctions in the intestine in vitro and in vivo. Food Sci Biotechnol 2023; 32:1925-1933. [PMID: 37781063 PMCID: PMC10541376 DOI: 10.1007/s10068-023-01292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 03/03/2023] [Indexed: 03/28/2023] Open
Abstract
The natural byproduct Cinnamomum cassia was widely used in ancient Asia to cure disease because of its various pharmacological effects. Despite its ethnomedicinal benefits, few studies on the intestinal anti-inflammatory effect of C. cassia have been reported. Therefore, this study aimed to evaluate the potential beneficial effects of C. cassia on the intestine in vitro and in vivo. Herein, the effects of cinnamon hot water extract (CWE) on tight junction (TJ) barrier function, transepithelial electrical resistance, and mRNA expression were confirmed in Caco-2 cells. The CWE treatment groups showed significantly enhanced cell permeability, proinflammatory cytokine mRNA expression, and TJ expression. CWE-treated mice showed an improved histological index and decreased cytokine concentrations compared with those of colitis model mice. These results suggest that CWE alleviated inflammatory damage and improved the TJ barrier, indicating that CWE may be used as a functional food to improve intestinal health. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01292-3.
Collapse
Affiliation(s)
- Tae gwon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-Ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| | - Yu Rim Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-Ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| | - Soo-yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-Ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| | - Kwanyong Choi
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-Ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-Ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-Ro, Nowon-Gu, Seoul, 01811 Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-Ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
10
|
Nouni C, Theodosis-Nobelos P, Rekka EA. Antioxidant and Hypolipidemic Activities of Cinnamic Acid Derivatives. Molecules 2023; 28:6732. [PMID: 37764507 PMCID: PMC10535275 DOI: 10.3390/molecules28186732] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress and hyperlipidemia are important factors for the initiation and progression of various cell degenerative pathological conditions, including cardiovascular and neurological diseases. A series of cinnamic acid-derived acids, such as ferulic acid, sinapic acid, 3,4-dimethoxycinnamic acid, p-coumaric acid, and (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid, were esterified or amidated with various moieties, bearing different biological activities, and evaluated. The antioxidant and radical scavenging abilities of the compounds via inhibition of rat hepatic microsomal membrane lipid peroxidation, as well as their interaction with the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), were assessed. Further, their hypolipidemic activity in vivo was tested. The majority of the obtained compounds demonstrated considerable radical scavenging and antioxidant action, with a parallel decrease in Triton-induced hyperlipidemia in rats. The (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid derivative with morpholine and 4-methylpiperidine (compounds 4 and 13, respectively) significantly decreased triglycerides and total cholesterol in the plasma of hyperlipidemic rats, with an antioxidant capacity similar to that of the antioxidant Trolox. The compounds were designed to exhibit antioxidant and hypolipidemic pharmacological actions, and this succeeded for the majority of them. Thus, such agents may be of interest in conditions and diseases implicating oxidative stress and dyslipidemia.
Collapse
Affiliation(s)
- Christina Nouni
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Ma Y, Chen R, Chen Z, Zhang S. Insight into structure-activity relationships of hydroxycinnamic acids modified porous starch: The effect of phenolic hydroxy groups. Food Chem 2023; 426:136683. [PMID: 37356239 DOI: 10.1016/j.foodchem.2023.136683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Antioxidant capacity of hydroxycinnamic acids-modified starch mainly depends on their chemical structure. Herein, cinnamic acid as well as meta-substituted and para-substituted cinnamic acid were selected for esterification with porous starch (labelled as CA@PS, m-CA@PS and p-CA@PS), with the successful formation of porous starch (labelled as PS) esters then confirmed by 1H NMR, 13C solid-state NMR and FT-IR spectroscopy. Three PS esters with almost same degrees of substitution (DS) were obtained, and antioxidant assays, including DPPH radical scavenging, reducing power and hydroxyl radical scavenging tests, were subsequently used to evaluate the antioxidant activity of the esterified PS. Overall, CA@PS showed weak antioxidant activity because of the absence of phenolic hydroxy, while p-CA@PS displayed better antioxidant capacity. Because its conjugated structure offered the stronger electron-donating effect, that could enhance antioxidant capacity. Therefore, antioxidant capacity depended significantly on overall chemical structure, including numbers and substitution positions of phenolic hydroxy groups.
Collapse
Affiliation(s)
- Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ruixi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Zidi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
12
|
Garcia L, Palma-Florez S, Espinosa V, Soleimani Rokni F, Lagunas A, Mir M, García-Celma MJ, Samitier J, Rodríguez-Abreu C, Grijalvo S. Ferulic acid-loaded polymeric nanoparticles prepared from nano-emulsion templates facilitate internalisation across the blood-brain barrier in model membranes. NANOSCALE 2023; 15:7929-7944. [PMID: 37067009 DOI: 10.1039/d2nr07256d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A hydroxycinnamic acid derivative, namely ferulic acid (FA) has been successfully encapsulated in polymeric nanoparticles (NPs) based on poly(lactic-co-glycolic acid) (PLGA). FA-loaded polymeric NPs were prepared from O/W nano-emulsion templates using the phase inversion composition (PIC) low-energy emulsification method. The obtained PLGA NPs exhibited high colloidal stability, good drug-loading capacity, and particle hydrodynamic diameters in the range of 74 to 117 nm, depending on the FA concentration used. In vitro drug release studies confirmed a diffusion-controlled mechanism through which the amount of released FA reached a plateau at 60% after 6 hours-incubation. Five kinetic models were used to fit the FA release data as a function of time. The Weibull distribution and Korsmeyer-Peppas equation models provided the best fit to our experimental data and suggested quasi-Fickian diffusion behaviour. Moderate dose-response antioxidant and radical scavenging activities of FA-loaded PLGA NPs were demonstrated using the DPPH˙ assay achieving inhibition activities close to 60 and 40%, respectively. Cell culture studies confirmed that FA-loaded NPs were not toxic according to the MTT colorimetric assay, were able to internalise efficiently SH-SY5Y neuronal cells and supressed the intracellular ROS-level induced by H2O2 leading to 52% and 24.7% of cellular viability at 0.082 and 0.041 mg mL-1, respectively. The permeability of the NPs through the blood brain barrier was tested with an in vitro organ-on-a-chip model to evaluate the ability of the FA-loaded PLGA and non-loaded PLGA NPs to penetrate to the brain. NPs were able to penetrate the barrier, but permeability decreased when FA was loaded. These results are promising for the use of loaded PLGA NPs for the management of neurological diseases.
Collapse
Affiliation(s)
- Luna Garcia
- IQAC, CSIC, Jordi Girona 18-26, E-08034-Barcelona, Spain.
| | - Sujey Palma-Florez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), E-08028-Barcelona, Spain
- CIBER-BBN, ISCIII, Spain.
| | | | | | - Anna Lagunas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), E-08028-Barcelona, Spain
- CIBER-BBN, ISCIII, Spain.
| | - Mònica Mir
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), E-08028-Barcelona, Spain
- Department of Electronics and Biomedical engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- CIBER-BBN, ISCIII, Spain.
| | - María José García-Celma
- Department of Pharmacy, Pharmaceutical Technology, and Physical-chemistry, IN2UB, R+D Associated Unit to CSIC, Pharmaceutical Nanotechnology, University of Barcelona, Joan XXIII 27-31, E-08028-Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), E-08028-Barcelona, Spain
- CIBER-BBN, ISCIII, Spain.
| | | | | |
Collapse
|
13
|
Kaur B, Kumar B, Sirhindi G, Guleria N, Kaur J. Phenolic Biotransformations in Wheatgrass Juice after Primary and Secondary Fermentation. Foods 2023; 12:foods12081624. [PMID: 37107419 PMCID: PMC10138189 DOI: 10.3390/foods12081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Fermented wheatgrass juice was prepared using a two-stage fermentation process by employing Saccharomyces cerevisiae and recombinant Pediococcus acidilactici BD16 (alaD+). During fermentation, a reddish-brown hue appeared in wheatgrass juice due to production of different types of red pigments. The fermented wheatgrass juice has considerably higher content of anthocyanins, total phenols and beta-carotenes as compared to unfermented wheatgrass juice. It has low ethanol content, which might be ascribed to the presence of certain phytolignans in wheatgrass juice. Several yeast-mediated phenolic transformations (such as bioconversion of coumaric acid, hydroxybenzoic acid, hydroxycinnamic acid and quinic acid into respective derivatives; glycosylation and prenylation of flavonoids; glycosylation of lignans; sulphonation of phenols; synthesis of carotenoids, diarylnonanoids, flavanones, stilbenes, steroids, quinolones, di- and tri-terpenoids and tannin) were identified in fermented wheatgrass juice using an untargeted liquid chromatography (LC)-mass spectrometry (MS)-matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/time-of-flight (TOF) technique. The recombinant P. acidilactici BD16 (alaD+) also supported flavonoid and lignin glycosylation; benzoic acid, hydroxycoumaric acid and quinic acid derivatization; and synthesis of anthraquinones, sterols and triterpenes with therapeutic benefits. The information presented in this manuscript may be utilized to elucidate the importance of Saccharomyces cerevisiae and P. acidilactici BD16 (alaD+) mediated phenolic biotransformations in developing functional food supplements such as fermented wheatgrass juice.
Collapse
Affiliation(s)
- Baljinder Kaur
- Systems Biology Laboratory, Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Balvir Kumar
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Nidhi Guleria
- Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Jashandeep Kaur
- Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| |
Collapse
|
14
|
Malekipour MH, Shirani F, Moradi S, Taherkhani A. Cinnamic acid derivatives as potential matrix metalloproteinase-9 inhibitors: molecular docking and dynamics simulations. Genomics Inform 2023; 21:e9. [PMID: 37037467 PMCID: PMC10085732 DOI: 10.5808/gi.22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 04/03/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is a zinc and calcium-dependent proteolytic enzyme involved in extracellular matrix degradation. Overexpression of MMP-9 has been confirmed in several disorders, including cancers, Alzheimer′s disease, autoimmune diseases, cardiovascular diseases, and dental caries. Therefore, MMP-9 inhibition is recommended as a therapeutic strategy for combating various diseases. Cinnamic acid derivatives have shown therapeutic effects in different cancers, Alzheimer′s disease, cardiovascular diseases, and dental caries. A computational drug discovery approach was performed to evaluate the binding affinity of selected cinnamic acid derivatives to the MMP-9 active site. The stability of docked poses for top-ranked compounds was also examined. Twelve herbal cinnamic acid derivatives were tested for possible MMP-9 inhibition using the AutoDock 4.0 tool. The stability of the docked poses for the most potent MMP-9 inhibitors was assessed by molecular dynamics (MD) in 10 nanosecond simulations. Interactions between the best MMP-9 inhibitors in this study and residues incorporated in the MMP-9 active site were studied before and after MD simulations. Cynarin, chlorogenic acid, and rosmarinic acid revealed a considerable binding affinity to the MMP-9 catalytic domain (ΔGbinding < -10 kcal/mol). The inhibition constant value for cynarin and chlorogenic acid were calculated at the picomolar scale and assigned as the most potent MMP-9 inhibitor from the cinnamic acid derivatives. The root-mean-square deviations for cynarin and chlorogenic acid were below 2 Å in the 10 ns simulation. Cynarin, chlorogenic acid, and rosmarinic acid might be considered drug candidates for MMP-9 inhibition.
Collapse
Affiliation(s)
- Mohammad Hossein Malekipour
- Dental Students Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Farzaneh Shirani
- Dental Research Center, Dental Research Institute, Department of Operative Dentistry, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Shadi Moradi
- Department of Medical Immunology, School of Medicine, Hamadan University of Medical Science, Hamadan 6517838678, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
- Corresponding author E-mail:
| |
Collapse
|
15
|
Mehta KA, Quek YCR, Henry CJ. Breadfruit (Artocarpus altilis): Processing, nutritional quality, and food applications. Front Nutr 2023; 10:1156155. [PMID: 37006932 PMCID: PMC10061028 DOI: 10.3389/fnut.2023.1156155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Breadfruit is an underutilized but highly nutritive crop containing complex carbohydrates while being low in fat. It is also a good source of essential amino acids (leucine, isoleucine, and valine). With a better understanding of breadfruit’s morphology, its potential as a global solution to food security has been gaining popularity. Breadfruit has been forecasted to have a larger amount of suitable cultivable land area compared to major crops such as rice and wheat, making its cultivation more desirable. Due to its highly perishable nature, good post-harvesting and post-processing practices are essential to extend the shelf life of breadfruit for global transportation and consumption. This paper aims to provide a comprehensive review on various processing methods of flour and starch, nutritional significance and new food applications of this novel food staple. In this review, the effects of the different processing and post-processing methods of breadfruit flour and starch have been described, and the nutritional composition and application of breadfruit flour as an ingredient replacer in various food applications have been discussed. It is vital to understand the processing and post-processing methods of breadfruit flour to enhance its shelf-life, physicochemical and functional properties. Furthermore, a compilation of novel food applications has been done to promote its use in the food industry. In conclusion, breadfruit flour and starch are highly versatile for use in numerous food products with added health benefits.
Collapse
Affiliation(s)
- Kervyn Ajay Mehta
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yu Chin Rina Quek
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- *Correspondence: Christiani Jeyakumar Henry,
| |
Collapse
|
16
|
Phinyo K, Ruangrit K, Pekkoh J, Tragoolpua Y, Kaewkod T, Duangjan K, Pumas C, Suwannarach N, Kumla J, Pathom-aree W, Gu W, Wang G, Srinuanpan S. Naturally Occurring Functional Ingredient from Filamentous Thermophilic Cyanobacterium Leptolyngbya sp. KC45: Phytochemical Characterizations and Their Multiple Bioactivities. Antioxidants (Basel) 2022; 11:antiox11122437. [PMID: 36552645 PMCID: PMC9774153 DOI: 10.3390/antiox11122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are rich in phytochemicals, which have beneficial impacts on the prevention of many diseases. This study aimed to comprehensively characterize phytochemicals and evaluate multifunctional bioactivities in the ethanolic extract of the cyanobacterium Leptolyngbya sp. KC45. Results found that the extract mainly contained chlorophylls, carotenoids, phenolics, and flavonoids. Through LC-ESI-QTOF-MS/MS analysis, 38 phenolic compounds with promising bioactivities were discovered, and a higher diversity of flavonoids was found among the phenolic compounds identified. The extract effectively absorbed the harmful UV rays and showed high antioxidant activity on DPPH, ABTS, and PFRAP. The extract yielded high-efficiency inhibitory effects on enzymes (tyrosinase, collagenase, ACE, and α-glucosidase) related to diseases. Interestingly, the extract showed a strong cytotoxic effect on cancer cells (skin A375, lung A549, and colon Caco-2), but had a much smaller effect on normal cells, indicating a satisfactory level of safety for the extract. More importantly, the combination of the DNA ladder assay and the TUNEL assay proved the appearance of DNA fragmentation in cancer cells after a 48 h treatment with the extract, confirming the apoptosis mechanisms. Our findings suggest that cyanobacterium extract could be potentially used as a functional ingredient for various industrial applications in foods, cosmetics, pharmaceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khomsan Ruangrit
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (J.P.); (S.S.)
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kritsana Duangjan
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (J.P.); (S.S.)
| |
Collapse
|
17
|
Lehleh A, Boutebdja M, Beghidja C, Beghidja A. Synthesis, crystal structure and Hirshfeld surface analysis of aqua-(3-meth-oxy-cinnamato-κ O)bis-(1,10-phenanthroline-κ 2 N, N')cobalt(II) nitrate. Acta Crystallogr E Crystallogr Commun 2022; 78:1113-1117. [PMID: 36380909 PMCID: PMC9638979 DOI: 10.1107/s2056989022009781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
The title compound, [Co(C10H9O3)(C12H8N2)2(H2O)]NO3 (I), crystallizes in the triclinic space group P with a monomeric [Co(3-meo-cin)(phen)2(H2O)]+ cation and a nitrate anion (3-meo-cin = 3-meth-oxy cinnamic acid) in the asymmetric unit. The CoII ion is coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms, the first from a meth-oxy cinnamate ligand and the second from a coordinated water mol-ecule, forming a distorted octa-hedral geometry. Discrete entities of the cation and nitrate anion are formed by water-nitrate O-H⋯O and phen-nitrate C-H⋯O hydrogen bonds. The components are further assembled into chains along the c-axis direction. Layers are than formed by slipped π-π stacking inter-actions parallel to the bc plane. The inter-molecular inter-actions in the crystal structure were qu-anti-fied and analysed using Hirshfeld surface analysis.
Collapse
Affiliation(s)
- Asma Lehleh
- Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale (CHEMS), Université Frères Mentouri Constantine 1, 25017, Constantine, Algeria
| | - Mehdi Boutebdja
- Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale (CHEMS), Université Frères Mentouri Constantine 1, 25017, Constantine, Algeria
- Laboratoire Technologie des Matériaux Avancés, École Nationale Polytechnique de Constantine, Nouvelle Ville Universitaire Ali Mendjeli, 25000, Constantine, Algeria
| | - Chahrazed Beghidja
- Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale (CHEMS), Université Frères Mentouri Constantine 1, 25017, Constantine, Algeria
| | - Adel Beghidja
- Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale (CHEMS), Université Frères Mentouri Constantine 1, 25017, Constantine, Algeria
| |
Collapse
|
18
|
Tsai MF, Huang SM, Huang HY, Tsai SW, Kuo CH, Shieh CJ. Ultrasound Plus Vacuum-System-Assisted Biocatalytic Synthesis of Octyl Cinnamate and Response Surface Methodology Optimization. Molecules 2022; 27:molecules27217148. [PMID: 36363974 PMCID: PMC9657652 DOI: 10.3390/molecules27217148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Cinnamic acid is one of the phenolic compounds that is isolated from cinnamon, or other natural plants, and has a wide range of physiological activities. However, the application of cinnamic acid is limited due to its poor solubility and low oral bioavailability. In this study, the feasibility of producing octyl cinnamate by ultrasonic assistance, combined with a rotary evaporation under vacuum, was studied using methyl cinnamate and octanol as the starting materials. A Box–Behnken design (BBD) was employed to evaluate the effects of the operation parameters, including reaction temperature (55–75 °C), reaction time (4–12 h), and ultrasonic power (90–150 W) on the production of octyl cinnamate. Meanwhile, the synthesis process was further optimized by the modeling response surface methodology (RSM). The data indicated that octyl cinnamate was efficiently synthesized from methyl cinnamate and octanol using the ultrasound plus vacuum system; further, this system was superior to the conventional method. According to the RSM model for the actual experiments, a reaction temperature of 74.6 °C, a reaction time of 11.1 h, and an ultrasound power of 150 W were determined to be the best conditions for the maximum molar conversion of octyl cinnamate (93.8%). In conclusion, the highly efficient synthesis of octyl cinnamate by a rotary evaporator with an ultrasound plus vacuum system was achieved via RSM optimization.
Collapse
Affiliation(s)
- Ming-Fang Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Ming Huang
- Department of Nutrition, China Medical University, Taichung 406, Taiwan
| | - Hsin-Yi Huang
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuo-Wen Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| | - Chwen-Jen Shieh
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| |
Collapse
|
19
|
Ahmed M, Khan KUR, Ahmad S, Aati HY, Ovatlarnporn C, Rehman MSU, Javed T, Khursheed A, Ghalloo BA, Dilshad R, Anwar M. Comprehensive Phytochemical Profiling, Biological Activities, and Molecular Docking Studies of Pleurospermum candollei: An Insight into Potential for Natural Products Development. Molecules 2022; 27:molecules27134113. [PMID: 35807359 PMCID: PMC9268725 DOI: 10.3390/molecules27134113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to find the biological propensities of the vegetable plant Pleurospermum candollei by investigating its phytochemical profile and biological activities. Phytochemical analysis was done by spectroscopic methods to investigate the amount of total polyphenols, and biological evaluation was done by the different antioxidant, enzyme inhibitory (tyrosinase, α-amylase, and α-glucosidase), thrombolytic, and antibacterial activities. The highest amount of total phenolic and flavonoid contents was observed in methanolic extract (240.69 ± 2.94 mg GAE/g and 167.59 ± 3.47 mg QE/g); the fractions showed comparatively less quantity (57.02 ± 1.31 to 144.02 ± 2.11 mg GAE/g, and 48.21 ± 0.75 to 96.58 ± 2.30 mg QE/g). The effect of these bioactive contents was also related to biological activities. GCMS analysis led to the identification of bioactive compounds with different biological effects from methanolic extract (antioxidant; 55.07%, antimicrobial; 56.41%), while the identified compounds from the n-hexane fraction with antioxidant properties constituted 67.86%, and those with antimicrobial effects constituted 82.95%; however, the synergetic effect of polyphenols may also have contributed to the highest value of biological activities of methanolic extract. Molecular docking was also performed to understand the relationship of identified secondary metabolites with enzyme-inhibitory activities. The thrombolytic activity was also significant (40.18 ± 1.80 to 57.15 ± 1.10 % clot lysis) in comparison with streptokinase (78.5 ± 1.53 to 82.34 ± 1.25% clot lysis). Methanolic extract also showed good activity against Gram-positive strains of bacteria, and the highest activity was observed against Bacillus subtilis. The findings of this study will improve our knowledge of phytochemistry, and biological activities of P. candollei, which seems to be a ray of hope to design formulations of natural products for the improvement of health and prevention of chronic diseases; however, further research may address the development of novel drugs for use in pharmaceuticals.
Collapse
Affiliation(s)
- Maqsood Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
- Correspondence: (K.-u.-R.K.); (H.Y.A.)
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: (K.-u.-R.K.); (H.Y.A.)
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Thailand;
| | - Muhammad Sajid-ur Rehman
- Department of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Tariq Javed
- Lahore Pharmacy College (LMDC), Lahore 53400, Pakistan;
| | - Anjum Khursheed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
| | - Bilal Ahmad Ghalloo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
| | - Rizwana Dilshad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
| | - Maryam Anwar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.A.); (S.A.); (A.K.); (B.A.G.); (R.D.); (M.A.)
| |
Collapse
|
20
|
Nuzul MI, Jong VYM, Koo LF, Chan TH, Ang CH, Idris J, Husen R, Wong SW. Effects of Extraction Methods on Phenolic Content in the Young Bamboo Culm Extracts of Bambusa beecheyana Munro. Molecules 2022; 27:molecules27072359. [PMID: 35408756 PMCID: PMC9000241 DOI: 10.3390/molecules27072359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022] Open
Abstract
Nowadays, many studies focus on the potential of bamboo as a source of bioactive compounds and natural antioxidants for nutraceutical, pharmaceutical, and food sources. This study is a pioneering effort to determine the total phenolic content, total flavonoid content and free radical scavenging activity, as well as the phenolic identification and quantification of Bambusa beecheyana. The study was conducted by using ethanol, methanol, and water for solvent extraction by applying cold maceration, Soxhlet, and ultrasonic-assisted extraction techniques. The results showed that Soxhlet and ultrasonic-assisted Bambusa beecheyana culm extracts had an increase in the extract’s dry yield (1.13–8.81%) but a constant p-coumaric acid (4) content (0.00035 mg/g) as compared to the extracts from the cold maceration. The ultrasonic-assisted extraction method required only a small amount (250 mL) of solvent to extract the bamboo culms. A significant amount of total phenolics (107.65 ± 0.01 mg GAE/g) and flavonoids (43.89 ± 0.05 mg QE/g) were found in the Soxhlet methanol culm extract. The extract also possessed the most potent antioxidant activity with an IC50 value of 40.43 µg/mL as compared to the positive control, ascorbic acid. The UHPLC–ESI–MS/MS analysis was carried out on the Soxhlet methanol extract, ultrasonic-assisted extract at 40 min, and cold methanol extract. The analysis resulted in the putative identification of a total of five phenolics containing cinnamic acid derivatives. The two cinnamic acid derivatives, p-coumaric acid (4) and 4-methoxycinnamic acid (5), were then used as markers to quantify the concentration of both compounds in all the extracts. Both compounds were not found in the water extracts. These results revealed that the extract from Soxhlet methanol of Bambusa beecheyana could be a potential botanical source of natural antioxidants. This study provides an important chemical composition database for further preclinical research on Bambusa beecheyana.
Collapse
Affiliation(s)
- Mohd. Izuddin Nuzul
- Centre of Applied Science Studies, Universiti Technologi MARA, Kota Samarahan 94300, Sarawak, Malaysia; (M.I.N.); (C.H.A.); (R.H.)
| | - Vivien Yi Mian Jong
- Centre of Applied Science Studies, Universiti Technologi MARA, Kota Samarahan 94300, Sarawak, Malaysia; (M.I.N.); (C.H.A.); (R.H.)
- Correspondence:
| | - Lee Feng Koo
- Department of Basic Sciences and Engineering, Faculty of Agriculture and Food Science, Universiti Putra Malaysia, Bintulu Campus, Bintulu 97008, Sarawak, Malaysia;
| | - Thye Huat Chan
- Carbon Xchange (Sarawak) Sdn. Bhd. 1st Floor, Lot 8724, Block 16, 17-C, Green Heights PH3, New Airport Road, Kuching 93250, Sarawak, Malaysia; (T.H.C.); (S.W.W.)
| | - Chung Huap Ang
- Centre of Applied Science Studies, Universiti Technologi MARA, Kota Samarahan 94300, Sarawak, Malaysia; (M.I.N.); (C.H.A.); (R.H.)
| | - Juferi Idris
- Faculty of Chemical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Sarawak Branch, Samarahan Campus, Kota Samarahan 94300, Sarawak, Malaysia;
- Faculty of Chemical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
| | - Rafidah Husen
- Centre of Applied Science Studies, Universiti Technologi MARA, Kota Samarahan 94300, Sarawak, Malaysia; (M.I.N.); (C.H.A.); (R.H.)
| | - Siaw Wei Wong
- Carbon Xchange (Sarawak) Sdn. Bhd. 1st Floor, Lot 8724, Block 16, 17-C, Green Heights PH3, New Airport Road, Kuching 93250, Sarawak, Malaysia; (T.H.C.); (S.W.W.)
| |
Collapse
|
21
|
Płowuszyńska A, Gliszczyńska A. Recent Developments in Therapeutic and Nutraceutical Applications of p-Methoxycinnamic Acid from Plant Origin. Molecules 2021; 26:3827. [PMID: 34201697 PMCID: PMC8270276 DOI: 10.3390/molecules26133827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
The p-methoxycinnamic acid (p-MCA) is one of the most studied phenylpropanoids with high importance not only in the wide spectrum of therapeutic activities but also its potential application for the food industry. This natural compound derived from plants exhibits a wide range of biologically useful properties; therefore, during the last two decades it has been extensively tested for therapeutic and nutraceutical applications. This article presents the natural sources of p-MCA, its metabolism, pharmacokinetic properties, and safety of its application. The possibilities of using this dietary bioactive compound as a nutraceutical agent that may be used as functional food ingredient playing a vital role in the prevention and treatment of many chronic diseases is also discussed. We present the antidiabetic, anticancer, antimicrobial, hepato-, and neuroprotective activities of p-MCA and methods of its lipophilization that have been developed so far to increase its industrial application and bioavailability in the biological systems.
Collapse
Affiliation(s)
| | - Anna Gliszczyńska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|