1
|
Ter ZY, Chang LS, Zaini NAM, Fazry S, Babji AS, Koketsu M, Takashima S, Kamal N, Lim SJ. Untargeted metabolomics profiling for revealing water-soluble bioactive components and biological activities in edible bird's nest. Food Res Int 2024; 198:115289. [PMID: 39643356 DOI: 10.1016/j.foodres.2024.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
Edible bird's nest (EBN) is a functional food renowned for its numerous health benefits. While its nutritional and therapeutic value is well-documented, the metabolites contributing to the bioactivities of EBN remain poorly understood. This study aimed to identify the metabolites present in EBN subjected to different treatments, including double-boiled EBN (EBNdb), EBN hydrolysate (EBNhydro), EBN fermented with Lactobacillus helveticus (EBNLH), Latilactobacillus curvatus (EBNLC), and Latilactobacillus sakei (EBNLS) using liquid chromatography-mass spectrometry (LC-MS) and correlate the identified bioactive metabolites with the bioactivities of EBN. It was found that the fermented EBNs exhibited the highest number of metabolites, with 76 tentatively identified, followed by EBNhydro (45) and EBNdb (37). Citric acid (1.97-4.48 g/kg) was present in all treated EBN samples, while L(+)-lactic acid (3.03-8.07 g/kg) and adipic acid (2.33-3.18 g/kg) were only found in fermented EBNs. Among the treated EBN samples, EBNLC demonstrated the significantly highest (p ≤ 0.05) antioxidative (22.34 ± 0.41 % 1,1-diphenyl-2-picrylhydrazil radical scavenging activity), antihypertensive (5.46 ± 0.26 % angiotensin-converting enzyme inhibitory activity), and antihyperglycemic activities (6.48 ± 0.34 % α-amylase inhibitory activity). A total of 18 metabolites, including citric acid, 4-sphingenin, N-acetylcitrulline, 4-aminophenol, L(+)-lactic acid, 2-oxoadipate, sildenafil, formylglycinamidin-RP, 11β,17α,21-α-5β-pregnane-3,20-dione, 2-ketobutyric acid, homoserine, benzaldehyde, 1-pyrroline4-hydroxy-2-carboxylate, nortriptyline, 1-methylguanine, 3-hydroxy-trimethyllysine, 3-phenylpropionate, and reserphine were predicted as bioactive metabolites using the partial least squares discriminant analysis (PLS-DA). This study provides valuable insights into the metabolites present in EBN and serves as fundamental data for future investigations into the bioactive compounds responsible for its specific health benefits, potentially leading to the development of enhanced EBN-based functional foods.
Collapse
Affiliation(s)
- Zhi Yin Ter
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Lee Sin Chang
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur, No.1, Jalan Menara Gading, UCSI Heights 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Nurul Aqilah Mohd Zaini
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Abdul Salam Babji
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Shigeo Takashima
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Nurkhalida Kamal
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
2
|
Ma T, Mo W, Lv B, Wang W, He H, Jian C, Liu X, Li S, Guo Y. A Review of the Nutritional Composition, Storage Challenges, Processing Technology and Widespread Use of Bamboo Shoots. Foods 2024; 13:3539. [PMID: 39593955 PMCID: PMC11592693 DOI: 10.3390/foods13223539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/27/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Bamboo shoots, as the young bamboo stems, are rich in protein, fiber, vitamins, and minerals, as well as many bioactive substances beneficial to health, and are gaining in importance worldwide as a healthy food and dietary supplement. However, fresh bamboo shoots lignify rapidly after harvesting and contain cyanogenic glycosides, limiting the safe and healthy consumption of bamboo shoots. To this end, based on the changes in nutritional composition and the physiological properties of fresh and post-harvest bamboo shoots, factors affecting the preservation of post-harvest bamboo shoots are emphasized, including a series of physical and chemical regimes and various processing methods for post-harvest preservation. Furthermore, a systematic biorefinery approach for using bamboo shoot processing residue to prepare value-added products is also discussed. Finally, the article also discusses issues related to sustainable development, safeguarding food security, and addressing potential health impacts in order to provide a scientific basis for researchers to further develop and increase the added value of bamboo shoots.
Collapse
Affiliation(s)
- Ting Ma
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Wenfeng Mo
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Beibei Lv
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Wenxuan Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Hailin He
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Cuiwen Jian
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Yuan Guo
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530012, China
| |
Collapse
|
3
|
Cai W, Zhuang H, Wang X, Fu X, Chen S, Yao L, Sun M, Wang H, Yu C, Feng T. Functional Nutrients and Jujube-Based Processed Products in Ziziphus jujuba. Molecules 2024; 29:3437. [PMID: 39065014 PMCID: PMC11279998 DOI: 10.3390/molecules29143437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Jujube (Ziziphus jujuba Mill.) is the first tree species in China, with a long history and abundant yield. However, fresh jujubes have a short shelf-life and are not resistant to storage. Therefore, more and more processed jujube products are being studied. These processed products can extend the shelf-life of jujubes and attract widespread attention for their rich functional nutrients. This review summarized changes in nutrients of fresh jujube and processed products and the research progress of different preparation methods of jujubes. Meanwhile, the pharmacological effects of bioactive components in jujube-based products were concluded. Jujube and its processed products contain rich polysaccharides, vitamin C, and other functional nutrients, which are beneficial to humans. As the initial processing method for jujubes, vacuum freezing or microwave drying have become the most commonly used and efficient drying methods. Additionally, processed jujube products cannot be separated from the maximum retention of nutrients and innovation of flavor. Fermentation is the main deep-processing method with broad development potential. In the future, chemical components and toxicological evaluation need to be combined with research to bring consumers higher quality functional jujube products and ensure the sustainable development of the jujube industry.
Collapse
Affiliation(s)
- Weitong Cai
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Haining Zhuang
- School of Health and Society Care, Shanghai Urban Construction Vocational College, Shanghai 201100, China
| | - Xiaoyu Wang
- Hunan Wuzizui Industrial Group Co., Ltd., Xiangtan 411228, China
| | - Xia Fu
- Hunan Wuzizui Industrial Group Co., Ltd., Xiangtan 411228, China
| | - Sheng Chen
- Hunan Wuzizui Industrial Group Co., Ltd., Xiangtan 411228, China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| |
Collapse
|
4
|
Li B, Zhang R, Du F. Electrochemical sensor monitoring of the fermentation process of sour bamboo shoots. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
5
|
Zhang G, Zhang L, Ahmad I, Zhang J, Zhang A, Tang W, Ding Y, Lyu F. Recent advance in technological innovations of sugar-reduced products. Crit Rev Food Sci Nutr 2022; 64:5128-5142. [PMID: 36454077 DOI: 10.1080/10408398.2022.2151560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sugar is crucial as an essential nutrient for humans as well as for providing texture, sweetness and so on to food. But with the rise in people's pursuit of health, it is becoming increasingly clear that excessive consumption of sugar can locate a load on the body. It has been that excessive sugar is associated with many diseases, such as dental caries, obesity, diabetes, and coronary heart disease. Therefore, researchers and industries are trying to reduce or substitute sugar in food without affecting the sensory evaluation. Substituting sugar with sweeteners is alternatively becoming the most traditional way to minimize its use. So far, the sweeteners such as stevia and xylitol have been are commercially applied. Several studies have shown that technological innovation can partially compensate for the loss in sweetness as a result of sugar reduction, such as cross-modal interactions that stimulate sweetness with aroma, nanofiltration that filters disaccharides and above, enzyme-catalyzed sugar hydrolysis, and microbial fermentation that turns sugar into sugar alcohol. This review summarizes these studies to enhance the safety and quality of sugar-reduced products, and will provide some theoretical frameworks for the food industry to reduce sugar in foods, meet consumers' needs, and promote human health.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Lyu Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Ishtiaq Ahmad
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| |
Collapse
|
6
|
Dahiya D, Nigam PS. Nutrition and Health through the Use of Probiotic Strains in Fermentation to Produce Non-Dairy Functional Beverage Products Supporting Gut Microbiota. Foods 2022; 11:2760. [PMID: 36140888 PMCID: PMC9497984 DOI: 10.3390/foods11182760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Pure viable strains of microorganisms identified and characterised as probiotic cultures are used in the fermentation process to prepare functional beverages. The fermented probiotic products can be consumed as a source of nutrition and also for the maintenance of healthy gut microbiota. The functional beverages contain the substrates used for the preparation of product with a specific culture or a mixture of known strains used to perform the fermentation, hence these drinks can be considered as a healthy formulation of synbiotic products. If a beverage is prepared using agriculturally sourced materials, the fermented substrates with their oligosaccharides and fiber content act as prebiotics. Both the components (probiotic strain/s and prebiotic substrate) exist in a synergistic relationship in the product and contribute to several benefits for nutrition and gut health. The preparation of such probiotic beverages has been studied using non-dairy-based materials, including fruits, vegetables, nuts, grains, and cassava, a staple diet source in many regions. The consumption of beverages prepared with the use of probiotics, which contain active microbial cells and their metabolites, contributes to the functional properties of beverages. In addition, the non-dairy probiotic products can be used by consumers of all groups and food cultures, including vegans and vegetarians, and particularly consumers with allergies to dairy-based products. The aim of this article is to present a review of published research highlighting specific probiotic strains, which have the potential to enhance sustainability of healthy GIT microbiota, used in the fermentation process for the preparation of non-dairy beverages.
Collapse
Affiliation(s)
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|