1
|
Montalbetti R, Machala Z, Gherardi M, Laurita R. “Production and Chemical Composition of Plasma Activated Water: A Systematic Review and Meta‐Analysis”. PLASMA PROCESSES AND POLYMERS 2024. [DOI: 10.1002/ppap.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/06/2024] [Indexed: 01/05/2025]
Abstract
ABSTRACTThe physio‐chemical interplay between cold atmospheric plasma (CAP) and water confers unique chemical and biological properties to the liquid, producing plasma‐activated water (PAW). This review systematically examines various methodologies for PAW production, focusing on the effects of process parameters on reactive oxygen and nitrogen species (RONS) concentration and pH levels in PAW. It presents detailed analyses of CAP sources, working gases, and treatment conditions, showcasing their impact on PAW processes. The extracted data are reprocessed to derive parameters such as mean energy density and RONS production efficiency. Specific plasma‐water configurations exhibit notably higher production rates, indicating promising opportunities for advancing PAW generation techniques and enhancing its applicability in various fields.
Collapse
Affiliation(s)
- Roberto Montalbetti
- Department of Industrial Engineering Alma Mater Studiorum—University of Bologna Bologna Italy
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics Comenius University Bratislava Bratislava Slovakia
| | - Matteo Gherardi
- Department of Industrial Engineering Alma Mater Studiorum—University of Bologna Bologna Italy
- Interdepartmental Centre for Industrial Research Advanced Mechanical Engineering Applications and Materials Technology Alma Mater Studiorum—University of Bologna Bologna Italy
| | - Romolo Laurita
- Department of Industrial Engineering Alma Mater Studiorum—University of Bologna Bologna Italy
- Interdepartmental Centre for Industrial Research Health Sciences and Technologies Alma Mater Studiorum—University of Bologna Bologna Italy
| |
Collapse
|
2
|
Lee G, Choi SW, Yoo M, Chang HJ, Lee N. Effects of Plasma-Activated Water Treatment on the Inactivation of Microorganisms Present on Cherry Tomatoes and in Used Wash Solution. Foods 2023; 12:2461. [PMID: 37444199 DOI: 10.3390/foods12132461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Herein, we investigated the potential of plasma-activated water (PAW) as a wash solution for the microbial decontamination of cherry tomatoes. We analyzed the efficacy of PAW as a bactericidal agent based on reactive species and pH. Immersion for 5 min in PAW15 (generated via plasma activation for 15 min) was determined as optimal for microbial decontamination of fresh produce. The decontamination efficacy of PAW15 exceeded those of mimic solutions with equivalent reactive species concentrations and pH (3.0 vs. 1.7 log reduction), suggesting that the entire range of plasma-derived reactive species participates in decontamination rather than a few reactive species. PAW15-washing treatment achieved reductions of 6.89 ± 0.36, 7.49 ± 0.40, and 5.60 ± 0.05 log10 CFU/g in the counts of Bacillus cereus, Salmonella sp., and Escherichia coli O157:H7, respectively, inoculated on the surface of cherry tomatoes, with none of these strains detected in the wash solution. During 6 days of 25 °C storage post-washing, the counts of aerobic bacteria, yeasts, and molds were below the detection limit. However, PAW15 did not significantly affect the viability of RAW264.7 cells. These results demonstrate that PAW effectively inactivates microbes and foodborne pathogens on the surface of cherry tomatoes and in the wash solution. Thus, PAW could be used as an alternative wash solution in the fresh produce industry without cross-contamination during washing and environmental contamination by foodborne pathogens or potential risks to human health.
Collapse
Affiliation(s)
- Gaeul Lee
- Food Safety and Distribution Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Sung-Wook Choi
- Food Safety and Distribution Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Miyoung Yoo
- Food Standard Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Hyun-Joo Chang
- Food Safety and Distribution Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Nari Lee
- Food Safety and Distribution Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| |
Collapse
|
3
|
Huo J, Zhang M, Wang D, S Mujumdar A, Bhandari B, Zhang L. New preservation and detection technologies for edible mushrooms: A review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3230-3248. [PMID: 36700618 DOI: 10.1002/jsfa.12472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 01/26/2023] [Indexed: 06/17/2023]
Abstract
Edible mushrooms are nutritious, tasty, and have medicinal value, which makes them very popular. Fresh mushrooms have a high water content and a crisp texture. They demonstrate strong metabolic activity after harvesting. However, they are prone to textural changes, microbial infestation, and nutritional and flavor loss, and they therefore require appropriate post-harvest processing and preservation. Important factors affecting safety and quality during their processing and storage include their quality, source, microbial contamination, physical damage, and chemical residues. Thus, these aspects should be tested carefully to ensure safety. In recent years, many new techniques have been used to preserve mushrooms, including electrofluidic drying and cold plasma treatment, as well as new packaging and coating technologies. In terms of detection, many new detection techniques, such as nuclear magnetic resonance (NMR), imaging technology, and spectroscopy can be used as rapid and effective means of detection. This paper reviews the new technological methods for processing and detecting the quality of mainstream edible mushrooms. It mainly introduces their working principles and application, and highlights the future direction of preservation, processing, and quality detection technologies for edible mushrooms. Adopting appropriate post-harvest processing and preservation techniques can maintain the organoleptic properties, nutrition, and flavor of mushrooms effectively. The use of rapid, accurate, and non-destructive testing methods can provide a strong assurance of food safety. At present, these new processing, preservation and testing methods have achieved good results but at the same time there are certain shortcomings. So it is recommended that they also be continuously researched and improved, for example through the use of new technologies and combinations of different technologies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingyi Huo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Dayuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Quebec, Canada
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
| | - Lujun Zhang
- R&D Center, Shandong Qihe Biotechnology Co., Ltd, Zibo, China
| |
Collapse
|
4
|
Yu NN, Ketya W, Choi EH, Park G. Plasma Promotes Fungal Cellulase Production by Regulating the Levels of Intracellular NO and Ca 2. Int J Mol Sci 2022; 23:6668. [PMID: 35743111 PMCID: PMC9223429 DOI: 10.3390/ijms23126668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
For the industrial-scale production of useful enzymes by microorganisms, technological development is required for overcoming a technical bottleneck represented by poor efficiency in the induction of enzyme gene expression and secretion. In this study, we evaluated the potential of a non-thermal atmospheric pressure plasma jet to improve the production efficiency of cellulolytic enzymes in Neurospora crassa, a filamentous fungus. The total activity of cellulolytic enzymes and protein concentration were significantly increased (1.1~1.2 times) in media containing Avicel 24-72 h after 2 and 5 min of plasma treatment. The mRNA levels of four cellulolytic enzymes in fungal hyphae grown in media with Avicel were significantly increased (1.3~17 times) 2-4 h after a 5 min of plasma treatment. The levels of intracellular NO and Ca2+ were increased in plasma-treated fungal hyphae grown in Avicel media after 48 h, and the removal of intracellular NO decreased the activity of cellulolytic enzymes in media and the level of vesicles in fungal hyphae. Our data suggest that plasma treatment can promote the transcription and secretion of cellulolytic enzymes into the culture media in the presence of Avicel (induction condition) by enhancing the intracellular level of NO and Ca2+.
Collapse
Affiliation(s)
- Nan-Nan Yu
- Plasma Bioscience Research Center and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (N.-N.Y.); (W.K.); (E.-H.C.)
| | - Wirinthip Ketya
- Plasma Bioscience Research Center and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (N.-N.Y.); (W.K.); (E.-H.C.)
| | - Eun-Ha Choi
- Plasma Bioscience Research Center and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (N.-N.Y.); (W.K.); (E.-H.C.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (N.-N.Y.); (W.K.); (E.-H.C.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| |
Collapse
|
5
|
Corona Discharge Power of Plasma Treatment Influence on the Physicochemical and Microbial Quality of Enoki Mushroom (Flammulina velutipes). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma treatment was widely known as an effective technology applied for contact-surface decontamination. Enoki (Flammulina velutipes) was an edible-medicinal mushroom with different phytochemicals and bioactive components beneficial for human health. Enoki mushroom had high respiration rate therefore it was highly perishable after harvesting. Moreover, it was greatly susceptible to microbial contamination but it was not feasible to be decontaminated by normal water washing. It’s urgent to extend shelf-life and control microbial criteria on this mushroom in dry manner without aqueous treatment. Corona discharge plasma was among 4 kinds of diverse cold atmospheric pressure plasma sources widely applied in food industry. This study demonstrated the influence of corona discharge plasma power values (control, 120, 150, 180, 210 W) on the physicochemical and microbial characteristics of Enoki mushroom during 10 days of storage at ambient temperature. Results showed that Enoki mushroom should be treated at 150 W of corona discharge plasma power to retain weight loss, total soluble solid, vitamin C in acceptable values while reducing total Aerobic count, Coliform, Enterobacteriaceae as much as possible. At the 10th day of storage, the weight loss, total soluble solid, vitamin C, total Aerobic count, Coliform, Enterobacteriaceae were recorded at 3.35±0.07%, 6.98±0.03 oBrix, 14.81±0.04 mg/100 g, 4.71±0.05 log CFU/g, 3.17±0.02 log CFU/g, 2.13±0.01 CFU/g, respectively. Findings of this research proved that corona discharge plasma pretreatment would be appropriate to maintain physicochemical properties and retard microbial loads on Enoki mushroom during preservation.
Collapse
|
6
|
Decontamination-Induced Modification of Bioactivity in Essential Oil-Based Plasma Polymer Coatings. Molecules 2021; 26:molecules26237133. [PMID: 34885713 PMCID: PMC8659139 DOI: 10.3390/molecules26237133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/19/2023] Open
Abstract
Plasma polymer coatings fabricated from Melaleuca alternifolia essential oil and its derivatives have been previously shown to reduce the extent of microbial adhesion on titanium, polymers, and other implantable materials used in dentistry. Previous studies have shown these coatings to maintain their performance under standard operating conditions; however, when used in e.g., a dental implant, these coatings may inadvertently become subject to in situ cleaning treatments, such as those using an atmospheric pressure plasma jet, a promising tool for the effective in situ removal of biofilms from tissues and implant surfaces. Here, we investigated the effect of such an exposure on the antimicrobial performance of the Melaleuca alternifolia polymer coating. It was found that direct exposure of the polymer coating surface to the jet for periods less than 60 s was sufficient to induce changes in its surface chemistry and topography, affecting its ability to retard subsequent microbial attachment. The exact effect of the jet exposure depended on the chemistry of the polymer coating, the length of plasma treatment, cell type, and incubation conditions. The change in the antimicrobial activity for polymer coatings fabricated at powers of 20–30 W was not statistically significant due to their limited baseline bioactivity. Interestingly, the bioactivity of polymer coatings fabricated at 10 and 15 W against Staphylococcus aureus cells was temporarily improved after the treatment, which could be attributed to the generation of loosely attached bioactive fragments on the treated surface, resulting in an increase in the dose of the bioactive agents being eluted by the surface. Attachment and proliferation of Pseudomonas aeruginosa cells and mixed cultures were less affected by changes in the bioactivity profile of the surface. The sensitivity of the cells to the change imparted by the jet treatment was also found to be dependent on their origin culture, with mature biofilm-derived P. aeruginosa bacterial cells showing a greater ability to colonize the surface when compared to its planktonic broth-grown counterpart. The presence of plasma-generated reactive oxygen and nitrogen species in the culture media was also found to enhance the bioactivity of polymer coatings fabricated at power levels of 10 and 15 W, due to a synergistic effect arising from simultaneous exposure of cells to reactive oxygen and nitrogen species (RONS) and eluted bioactive fragments. These results suggest that it is important to consider the possible implications of inadvertent changes in the properties and performance of plasma polymer coatings as a result of exposure to in situ decontamination, to both prevent suboptimal performance and to exploit possible synergies that may arise for some polymer coating-surface treatment combinations.
Collapse
|