1
|
Gong Y, Li C, He F, Ge F, Ju Y, Zhong H, Li W. Comprehensive review on in vitro bioaccessibility of mercury in various foodstuffs. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138136. [PMID: 40199075 DOI: 10.1016/j.jhazmat.2025.138136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/15/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Accurate assessment of dietary mercury (Hg) exposure and effective risk mitigation rely on a thorough understanding of its bioaccessibility. However, current knowledge of Hg bioaccessibility remains fragmented, with individual studies focusing on specific food types and influencing factors. This hinders the development of comprehensive strategies to achieve Hg exposure-related Sustainable Development Goals. To address this knowledge gap, we conducted a comprehensive review of the bioaccessibility of total Hg (THg) and methylmercury (MeHg) across various foodstuffs. Our analysis included 633 records from 58 studies, covering globally reported seafood and region-specific traditional medicines and rice. We delved into the effects of food components and cooking methods on Hg bioaccessibility and identified the limitations of current research in this area. Our review reveals significant variations in Hg bioaccessibility across foodstuffs, with values ranging from undetectable to 105 % for seafood. Globally, applying bioaccessibility corrections lowers estimates of dietary exposure to THg and MeHg from seafood by 20.6 %-70.9 % and 16.3 %-87.0 %, respectively. Analysis of affecting factors suggests that food components play a crucial role in shaping Hg bioaccessibility through processes such as complexation (including chelation) and sequestration, while high-temperature cooking lowers MeHg bioaccessibility by affecting MeHg-protein complexes. These findings suggest the potential of Hg bioaccessibility-manipulating strategies like co-digestion of foodstuffs rich in phytochemicals and high-temperature cooking to mitigate dietary Hg exposure. Future research should focus on addressing the uncertainty in extrapolating laboratory findings to real-world scenarios to further refine risk assessment and develop effective mitigation strategies.
Collapse
Affiliation(s)
- Yu Gong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, PR China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, PR China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, PR China
| | - Feng Ge
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, PR China
| | - Yongming Ju
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, PR China.
| | - Huan Zhong
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China; Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario K9L 0G2, Canada.
| | - Weixin Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, PR China
| |
Collapse
|
2
|
Wang Y, Feng S, Chen J, Li Y, Wang M, Wu T, Fu S, Zhou Z, Li C, Wu P, Wang Z, Zhong Z, Zhong Y. Association between serum 25-hydroxyvitamin D concentration and the risk of colorectal cancer: A cross-sectional study. PLoS One 2025; 20:e0320335. [PMID: 40131935 PMCID: PMC11936264 DOI: 10.1371/journal.pone.0320335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/15/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND The role of vitamin D in the prevention of colorectal cancer (CRC) has been the focus of research, but the results of relevant studies are not entirely consistent. While most studies indicate that vitamin D has a protective effect against CRC, there are also research reports stating that at high serum levels, there is no significant association between vitamin D and CRC, or even an increased risk. Additionally, there are still differences in the recommended serum 25-hydroxyvitamin D [25(OH)D] concentrations among various guidelines or committees. This study examined the association between serum 25-hydroxyvitamin D concentrations and the risk of CRC in US adults. METHODS This study included 43,678 adult participants from the National Health and Nutrition Examination Survey (NHANES) 2001-2018, and logistic regression modelling was used to examine the association between serum 25(OH)D concentrations and the risk of CRC. We grouped participants according to the classification criteria of the various guidelines available for vitamin D, and controlled for confounding using a multi-model strategy, adjusting for key covariates such as gender, age, race, education level, marital status, family income to poverty ratio (PIR), body mass index (BMI), smoking habits, drinking habits, diabetes, hypertension, dyslipidemia, calcium intake, and total folate intake. We also performed trend tests to evaluate the linear relationship between serum 25(OH)D concentrations and CRC risk, used restricted cubic spline (RCS) plots to assess the dose-response relationship, and conducted further subgroup analyses with interaction tests to examine potential variations in the association across different population groups. We focused on the association between serum 25(OH)D concentration ≤ 75 nmol/L and CRC, again using multivariable logistic regression with a multi-model strategy and RCS plots. RESULTS A total of 43,382 participants without CRC and 296 participants with CRC were included in this study. In the fully adjusted model, participants with serum 25(OH)D < 50 nmol/L had more than twice the risk of developing CRC compared to those with levels of 50-< 75 nmol/L (<30 nmol/L: Odds Ratio [OR] = 2.038, 95% Confidence Interval [CI]: 1.011-4.109; 30- < 50 nmol/L: OR = 2.090, 95% CI: 1.361-3.211). The negative correlation between serum 25(OH)D concentration and the risk of CRC was significant when serum 25(OH)D concentration was ≤ 75 nmol/L (P < 0.001). Each 1 nmol/L increase in serum 25(OH)D concentration was associated with an approximately 2.3% reduction in the risk of CRC (95% CI: 0.964-0.990). CONCLUSIONS Our findings indicate a strong inverse association between serum 25(OH)D concentrations and the risk of CRC, particularly when levels are ≤75 nmol/L. Maintaining serum 25(OH)D above 75 nmol/L is associated with a lower CRC risk and may serve as a cost-effective preventive strategy. Public health measures, including routine vitamin D screening in high-risk populations and targeted supplementation, could further support CRC prevention efforts.
Collapse
Affiliation(s)
- Yuru Wang
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siqi Feng
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Chen
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China
| | - Yun Li
- Changhai Community Health Service Center, Yangpu District, Shanghai, China
| | - Miaomiao Wang
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Wu
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China
| | - Shujuan Fu
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China
| | - Zhangjie Zhou
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China
| | - Cunya Li
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China
| | - Pantong Wu
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiying Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Yi Zhong
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Jung EB, Choi HJ, Lee JY, Hwang HJ, Chung MS. Comparison between intense pulsed light and continuous ultraviolet treatment processes for enhancing the vitamin D 2 content of shiitake mushroom (Lentinula edodes) powder. Food Chem 2025; 468:142434. [PMID: 39674016 DOI: 10.1016/j.foodchem.2024.142434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Shiitake mushrooms (Lentinula edodes) are a rich source of ergosterol, which can be converted into vitamin D2, a valuable nutrient for human health. This study evaluated the enhancement of vitamin D2 in shiitake-mushroom powders using intense pulsed light (IPL). The initial vitamin D2 content of the sample was 4.18 μg/g. After IPL treatment at various processing times and lamp voltages, the maximum concentration of vitamin D2 was reached 100.82 μg/g at 1800 V for 30 min-24 times higher than the control. The IPL effectively converted ergosterol into vitamin D2 in mushroom powders, with the ultraviolet (UV) range being the most influential. At certain fluences, IPL's effect on vitamin D2 production surpassed continuous UV treatment. These findings suggest that IPL can significantly enhance vitamin D2 content in mushroom powders, presenting a promising alternative for fortifying functional foods.
Collapse
Affiliation(s)
- Eun-Byul Jung
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, South Korea
| | - Hye-Jae Choi
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, South Korea
| | - Ji-Yoon Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, South Korea
| | - Hee-Jeong Hwang
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, South Korea.
| | - Myong-Soo Chung
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
4
|
Upadhyay S, Sharanagat VS. Plant protein-based Pickering emulsion for the encapsulation and delivery of fat-soluble vitamins: A systematic review. Int J Biol Macromol 2025:141635. [PMID: 40037448 DOI: 10.1016/j.ijbiomac.2025.141635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/29/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Vitamin deficiencies pose a significant global health challenge, leading to various health issues and economic burdens. These challenges arise with the delivery of fat-soluble vitamin (FSV) due to its poor stability against the environmental stimuli. The commercial fortification methods such as Pickering emulsion (PE), hydrogel and others offer a potential solution over the limitations of conventional vitamin delivery methods (degradation and poor bioavailability). PE stabilized by solid plant protein particles, have emerged as a promising approach for encapsulation and delivery of oil-soluble vitamins (A, D, E, and K). Plant proteins, with their amphiphilic nature and nutritional benefits, are particularly well-suited as a stabilizer for PE. Plant protein-based PE enhances protection of vitamins against the environmental stimuli and enhances the delivery efficiency of oil-soluble vitamins. Factors such as particle size, concentration, and oil type also influence the stability, encapsulation efficiency, and bio-accessibility of fat-soluble vitamins in PE. Hence, the present review explores the impact of various factors on the stability and bio-accessibility of fat-soluble vitamins (A, D and E) and also emphasizing the role of particle size and concentration of stabilizer in controlling release rates of vitamin encapsulated PE. The review also highlights the application of plant protein-based PEs in various food products including nutrient fortification, functional foods, and 3D food printing.
Collapse
Affiliation(s)
- Srishti Upadhyay
- National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | | |
Collapse
|
5
|
Rui X, Fu K, Wang H, Pan T, Wang W. Formation Mechanisms of Protein Coronas on Food-Related Nanoparticles: Their Impact on Digestive System and Bioactive Compound Delivery. Foods 2025; 14:512. [PMID: 39942105 PMCID: PMC11817056 DOI: 10.3390/foods14030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
The rapid development of nanotechnology provides new approaches to manufacturing food-related nanoparticles in various food industries, including food formulation, functional foods, food packaging, and food quality control. Once ingested, nanoparticles will immediately adsorb proteins in the biological fluids, forming a corona around them. Protein coronas alter the properties of nanoparticles, including their toxicity, cellular uptake, and targeting characteristics, by altering the aggregation state. In addition, the conformation and function of proteins and enzymes are also influenced by the formation of protein coronas, affecting the digestion of food products. Since the inevitable application of nanoparticles in food industries and their subsequent digestion, a comprehensive understanding of protein coronas is essential. This systematic review introduces nanoparticles in food and explains the formation of protein coronas, with interactions between proteins and nanoparticles. Furthermore, the potential origin of nanoparticles in food that migrate from packaging materials and their fates in the gastrointestinal tract has been reviewed. Finally, this review explores the possible effects of protein coronas on bioactive compounds, including probiotics and prebiotics. Understanding the formation mechanisms of protein coronas is crucial, as it enables the design of tailored delivery systems to optimize the bioavailability of bioactive compounds.
Collapse
Affiliation(s)
| | | | | | | | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Wang X, Zhu P, Ye A, Singh H, Acevedo-Fani A. Interfacial composition of coenzyme Q10 emulsions impacts coagulation of fortified milk during gastric digestion. Food Res Int 2025; 203:115774. [PMID: 40022318 DOI: 10.1016/j.foodres.2025.115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 03/03/2025]
Abstract
This study aimed to investigate the gastric digestion behaviour of heat-treated enriched milk containing Coenzyme Q10-loaded emulsions with different interfacial compositions. Four enriched milk types were compared: pasteurized with a Tween 80 stabilised emulsion (PAST-TW80), or with a sodium caseinate-stabilised emulsion (PAST-NaCN), and UHT with a TW80-stabilised emulsion (UHT-TW80), or PAST with a NaCN-stabilised emulsion (UHT-NaCN); all loaded with Coenzyme Q10. An in vitro dynamic gastric digestion model (Human Gastric Simulator) was utilized and the kinetics of milk coagulation and emptying of protein, lipid and Coenzyme Q10 were monitored. Adding NaCN-stabilised emulsion to heated milk led to a largely fragmented curd with signs of extensive droplets coalescence, disintegrating rapidly and accelerating protein and lipid release. Heated milk with TW80-stabilised emulsion produced a compact and closely integrated curd with limited coalescence, slowing nutrient emptying. UHT milk showed more curd fragmentation than PAST milk, regardless of emulsion type. The release profiles of Coenzyme Q10 were similar between UHT-TW80 and PAST-TW80 or between PAST-NaCN and UHT-NaCN, indicating the emulsion's interfacial composition as a key factor in controlling lipophilic bioactive release from the food matrix, regardless of heat treatment. These findings demonstrate that the emulsion's interfacial composition (NaCN vs TW80) and the heat treatment (PAST vs UHT) can be combined as a strategy to modulate milk coagulation kinetics and the rate of nutrient delivery to the small intestinal stage. This study provides insights into the development of functional milk products fortified with lipophilic bioactive compounds, as well as strategies for optimizing the controlled release of these compounds upon consumption.
Collapse
Affiliation(s)
- Xinya Wang
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Peter Zhu
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | |
Collapse
|
7
|
Saffarionpour S, Diosady LL. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Deliv Transl Res 2025; 15:26-65. [PMID: 38671315 DOI: 10.1007/s13346-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Cyclodextrins (CDs) have been investigated as potential biopolymeric carriers that can form inclusion complexes with numerous bioactive ingredients. The inclusion of micronutrients (e.g. vitamins or minerals) into cyclodextrins can enhance their solubility and provide oxidative or thermal stability. It also enables the formulation of products with extended shelf-life. The designed delivery systems with CDs and their inclusion complexes including electrospun nanofibers, emulsions, liposomes, and hydrogels, show potential in enhancing the solubility and oxidative stability of micronutrients while enabling their controlled and sustained release in applications including food packaging, fortified foods and dietary supplements. Nano or micrometer-sized delivery systems capable of controlling burst release and permeation, or moderating skin hydration have been reported, which can facilitate the formulation of several personal and skin care products for topical or transdermal delivery of micronutrients. This review highlights recent developments in the application of CDs for the delivery of micronutrients, i.e. vitamins, iron, and iodine, which play key roles in the human body, emphasizing their existing and potential applications in the food, pharmaceuticals, and cosmeceuticals industries.
Collapse
Affiliation(s)
| | - Levente L Diosady
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Majeed M, Rather MA. Advancements in vitamin D encapsulation: characterization, wall materials, and fortification applications. NUTRIRE 2024; 49:48. [DOI: 10.1186/s41110-024-00292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 01/06/2025]
|
9
|
Peñuñuri-Pacheco N, Moreno-García YA, González-Ríos H, Astiazarán-García H, López-Franco YL, Tortoledo-Ortiz O, Pérez-Báez AJ, Dávila-Ramírez JL, Lizardi-Mendoza J, Valenzuela-Melendres M. Optimization of the Encapsulation of Vitamin D3 in Oil in Water Nanoemulsions: Preliminary Application in a Functional Meat Model System. Foods 2024; 13:2842. [PMID: 39272607 PMCID: PMC11394896 DOI: 10.3390/foods13172842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Meat products containing Vitamin D3 (VD3) are an innovative option that could contribute to reducing deficiencies in this micronutrient. Designing nanoemulsions that carry VD3 is the first step in developing functional meat products. Thereby, this study investigated the impact of food components on the nanoemulsion properties. A central composite design was used to study the effects of pea protein (PP, 0.5-2.5%), safflower oil (SO, 5-15%), and salt (0-0.5%) on the nanoemulsion stability (ζ-potential and particle size) and the VD3 retention. Also, the optimized nanoemulsion carrying VD3 was incorporated into a meat matrix to study its retention after cooking. The combination of food components in the optimized nanoemulsion were SO = 9.12%, PP = 1.54%, and salt content = 0.4%, resulting in the predicted values of ζ-potential, particle size, and VD3 retention of -37.76 mV, 485 nm, and 55.1%, respectively. The VD3 that was nanoencapsulated and included in a meat product remained more stable after cooking than the VD3 that was not encapsulated. If a meat product is formulated with 5 or 10% safflower oil, the stability of the nanoencapsulated VD3 is reduced. This research contributes to developing functional meat products carrying nanoencapsulated vitamin D3 in natural food-grade components.
Collapse
Affiliation(s)
- Nallely Peñuñuri-Pacheco
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Yuvitza Alejandra Moreno-García
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Humberto González-Ríos
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Humberto Astiazarán-García
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Yolanda L López-Franco
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Orlando Tortoledo-Ortiz
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Anna Judith Pérez-Báez
- Instituto de Acuacultura del Estado de Sonora, Comonfort y Paseo del Canal, Centro de Gobierno, Ed. Sonora, Hermosillo 83280, Sonora, Mexico
| | - José Luis Dávila-Ramírez
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Jaime Lizardi-Mendoza
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Martin Valenzuela-Melendres
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
10
|
Aggeletopoulou I, Kalafateli M, Geramoutsos G, Triantos C. Recent Advances in the Use of Vitamin D Organic Nanocarriers for Drug Delivery. Biomolecules 2024; 14:1090. [PMID: 39334856 PMCID: PMC11430352 DOI: 10.3390/biom14091090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Nanotechnology, now established as a transformative technology, has revolutionized medicine by enabling highly targeted drug delivery. The use of organic nanocarriers in drug delivery systems significantly enhances the bioavailability of vitamins and their analogs, thereby improving cellular delivery and therapeutic effects. Vitamin D, known for its crucial role in bone health, also influences various metabolic functions, such as cellular proliferation, differentiation, and immunomodulation, and is increasingly explored for its anticancer potential. Given its versatile properties and biocompatibility, vitamin D is an attractive candidate for encapsulation within drug delivery systems. This review provides a comprehensive overview of vitamin D synthesis, metabolism, and signaling, as well as its applications in customized drug delivery. Moreover, it examines the design and engineering of organic nanocarriers that incorporate vitamin D and discusses advances in this field, including the synergistic effects achieved through the combination of vitamin D with other therapeutic agents. By highlighting these innovations, this review provides valuable insights into the development of advanced drug delivery systems and their potential to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332 Patras, Greece
| | - Georgios Geramoutsos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
11
|
Gorini F, Tonacci A. Vitamin D: An Essential Nutrient in the Dual Relationship between Autoimmune Thyroid Diseases and Celiac Disease-A Comprehensive Review. Nutrients 2024; 16:1762. [PMID: 38892695 PMCID: PMC11174782 DOI: 10.3390/nu16111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Autoimmune thyroid diseases (AITD) are among the most frequent autoimmune disorders, with a multifactorial etiology in which both genetic and environmental determinants are probably involved. Celiac disease (CeD) also represents a public concern, given its increasing prevalence due to the recent improvement of screening programs, leading to the detection of silent subtypes. The two conditions may be closely associated due to common risk factors, including genetic setting, changes in the composition and diversity of the gut microbiota, and deficiency of nutrients like vitamin D. This comprehensive review discussed the current evidence on the pivotal role of vitamin D in modulating both gut microbiota dysbiosis and immune system dysfunction, shedding light on the possible relevance of an adequate intake of this nutrient in the primary prevention of AITD and CeD. While future technology-based strategies for proper vitamin D supplementation could be attractive in the context of personalized medicine, several issues remain to be defined, including standardized assays for vitamin D determination, timely recommendations on vitamin D intake for immune system functioning, and longitudinal studies and randomized controlled trials to definitely establish a causal relationship between serum vitamin D levels and the onset of AITD and CeD.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
12
|
Li K, Qiao K, Xiong J, Guo H, Zhang Y. Nutritional Values and Bio-Functional Properties of Fungal Proteins: Applications in Foods as a Sustainable Source. Foods 2023; 12:4388. [PMID: 38137192 PMCID: PMC10742821 DOI: 10.3390/foods12244388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
From the preparation of bread, cheese, beer, and condiments to vegetarian meat products, fungi play a leading role in the food fermentation industry. With the shortage of global protein resources and the decrease in cultivated land, fungal protein has received much attention for its sustainability. Fungi are high in protein, rich in amino acids, low in fat, and almost cholesterol-free. These properties mean they could be used as a promising supplement for animal and plant proteins. The selection of strains and the fermentation process dominate the flavor and quality of fungal-protein-based products. In terms of function, fungal proteins exhibit better digestive properties, can regulate blood lipid and cholesterol levels, improve immunity, and promote gut health. However, consumer acceptance of fungal proteins is low due to their flavor and safety. Thus, this review puts forward prospects in terms of these issues.
Collapse
Affiliation(s)
- Ku Li
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Kaina Qiao
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Jian Xiong
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Hui Guo
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Yuyu Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| |
Collapse
|
13
|
Nicolescu A, Babotă M, Barros L, Rocchetti G, Lucini L, Tanase C, Mocan A, Bunea CI, Crișan G. Bioaccessibility and bioactive potential of different phytochemical classes from nutraceuticals and functional foods. Front Nutr 2023; 10:1184535. [PMID: 37575331 PMCID: PMC10415696 DOI: 10.3389/fnut.2023.1184535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
Nutraceuticals and functional foods are composed of especially complex matrices, with polyphenols, carotenoids, minerals, and vitamins, among others, being the main classes of phytochemicals involved in their bioactivities. Despite their wide use, further investigations are needed to certify the proper release of these phytochemicals into the gastrointestinal medium, where the bioaccessibility assay is one of the most frequently used method. The aim of this review was to gather and describe different methods that can be used to assess the bioaccessibility of nutraceuticals and functional foods, along with the most important factors that can impact this process. The link between simulated digestion testing of phytochemicals and their in vitro bioactivity is also discussed, with a special focus on the potential of developing nutraceuticals and functional foods from simple plant materials. The bioactive potential of certain classes of phytochemicals from nutraceuticals and functional foods is susceptible to different variations during the bioaccessibility assessment, with different factors contributing to this variability, namely the chemical composition and the nature of the matrix. Regardless of the high number of studies, the current methodology fails to assume correlations between bioaccessibility and bioactivity, and the findings of this review indicate a necessity for updated and standardized protocols.
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Lillian Barros
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Claudiu I. Bunea
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Sridonpai P, Suthipibul P, Boonyingsathit K, Chimkerd C, Jittinandana S, Judprasong K. Vitamin D Content in Commonly Consumed Mushrooms in Thailand and Its True Retention after Household Cooking. Foods 2023; 12:foods12112141. [PMID: 37297386 DOI: 10.3390/foods12112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
This study investigated the vitamin D level of nine species of cultivated mushrooms and three species of wild mushrooms commonly consumed in Thailand and the effect of cooking on their vitamin D content. Cultivated mushrooms were obtained from three wholesale markets, while wild mushrooms were collected from three trails in a conservation area. Mushrooms from each source were separated into four groups: raw, boiled, stir-fried, and grilled. Different forms of vitamin D were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The analyzed method demonstrated good linearity, accuracy, and precision, as well as being low in the limit of detection and limit of quantitation. Results showed that vitamin D2 and ergosterol (provitamin D2) were the major forms of vitamin D found in the mushrooms. Both raw cultivated and wild mushrooms had wide ranging ergosterol contents (7713-17,273 μg/100 g edible portion, EP). Lung oyster mushroom and termite mushroom contained high levels of vitamin D2 (15.88 ± 7.31 and 7.15 ± 0.67 μg/100 g EP, respectively), while other mushroom species had negligible amounts (0.06 to 2.31 μg per 100 g EP). True retention (TR) levels of vitamin D2 after boiling, stir-frying, and grilling were not significantly different (p > 0.05) (with estimated marginal means ± standard error 64.0 ± 2.3%, 58.8 ± 2.3%, and 64.7 ± 3.6% TR, respectively). Consuming cooked lung oyster mushrooms, in particular, along with regular exposure to sunlight should be promoted to reduce the incidence of vitamin D deficiency.
Collapse
Affiliation(s)
- Piyanut Sridonpai
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Philipda Suthipibul
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Konpong Boonyingsathit
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Chanika Chimkerd
- Center of Analysis for Product Quality, Natural Products Division, Faculty of Pharmacy, Mahidol University, Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand
| | - Sitima Jittinandana
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Kunchit Judprasong
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
15
|
Kido S, Chosa E, Tanaka R. The effect of six dried and UV-C-irradiated mushrooms powder on lipid oxidation and vitamin D contents of fish meat. Food Chem 2023; 398:133917. [DOI: 10.1016/j.foodchem.2022.133917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|
16
|
Maurya VK, Shakya A, Bashir K, Jan K, McClements DJ. Fortification by design: A rational approach to designing vitamin D delivery systems for foods and beverages. Compr Rev Food Sci Food Saf 2023; 22:135-186. [PMID: 36468215 DOI: 10.1111/1541-4337.13066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/09/2022]
Abstract
Over the past few decades, vitamin D deficiency has been recognized as a serious global public health challenge. The World Health Organization has recommended fortification of foods with vitamin D, but this is often challenging because of its low water solubility, poor chemical stability, and low bioavailability. Studies have shown that these challenges can be overcome by encapsulating vitamin D within well-designed delivery systems containing nanoscale or microscale particles. The characteristics of these particles, such as their composition, size, structure, interfacial properties, and charge, can be controlled to attain desired functionality for specific applications. Recently, there has been great interest in the design, production, and application of vitamin-D loaded delivery systems. Many of the delivery systems reported in the literature are unsuitable for widespread application due to the complexity and high costs of the processing operations required to fabricate them, or because they are incompatible with food matrices. In this article, the concept of "fortification by design" is introduced, which involves a systematic approach to the design, production, and testing of colloidal delivery systems for the encapsulation and fortification of oil-soluble vitamins, using vitamin D as a model. Initially, the challenges associated with the incorporation of vitamin D into foods and beverages are reviewed. The fortification by design concept is then described, which involves several steps: (i) selection of appropriate vitamin D form; (ii) selection of appropriate food matrix; (iii) identification of appropriate delivery system; (iv) identification of appropriate production method; (vii) establishment of appropriate testing procedures; and (viii) system optimization.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Sonepat, India
| | - Amita Shakya
- Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonepat, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA.,Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
17
|
Di Nunzio M, Loffi C, Montalbano S, Chiarello E, Dellafiora L, Picone G, Antonelli G, Tedeschi T, Buschini A, Capozzi F, Galaverna G, Bordoni A. Cleaning the Label of Cured Meat; Effect of the Replacement of Nitrates/Nitrites on Nutrients Bioaccessibility, Peptides Formation, and Cellular Toxicity of In Vitro Digested Salami. Int J Mol Sci 2022; 23:12555. [PMID: 36293416 PMCID: PMC9604274 DOI: 10.3390/ijms232012555] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 09/04/2024] Open
Abstract
Curing salts composed of mixtures of nitrates and nitrites are preservatives widely used in processed meats. Despite many desirable technological effects, their use in meat products has been linked to methemoglobinemia and the formation of nitrosamines. Therefore, an increasing "anti-nitrite feeling" has grown among meat consumers, who search for clean label products. In this view, the use of natural compounds as alternatives represents a challenge for the meat industry. Processing (including formulation and fermentation) induces chemical or physical changes of food matrix that can modify the bioaccessibility of nutrients and the formation of peptides, impacting on the real nutritional value of food. In this study we investigated the effect of nitrate/nitrite replacement with a combination of polyphenols, ascorbate, and nitrate-reducing microbial starter cultures on the bioaccessibility of fatty acids, the hydrolysis of proteins and the release of bioactive peptides after in vitro digestion. Moreover, digested salami formulations were investigated for their impacts on cell proliferation and genotoxicity in the human intestinal cellular model (HT-29 cell line). The results indicated that a replacement of synthetic nitrates/nitrites with natural additives can represent a promising strategy to develop innovative "clean label" salamis without negatively affecting their nutritional value.
Collapse
Affiliation(s)
- Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Cecilia Loffi
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- SSICA-Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale Faustino Tanara 31/A, 43121 Parma, Italy
| | - Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Elena Chiarello
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Luca Dellafiora
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Giorgia Antonelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Tullia Tedeschi
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Gianni Galaverna
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
18
|
Pop TL, Sîrbe C, Benţa G, Mititelu A, Grama A. The Role of Vitamin D and Vitamin D Binding Protein in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms231810705. [PMID: 36142636 PMCID: PMC9503777 DOI: 10.3390/ijms231810705] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Vitamin D (calciferol) is a fat-soluble vitamin that has a significant role in phospho-calcium metabolism, maintaining normal calcium levels and bone health development. The most important compounds of vitamin D are cholecalciferol (vitamin D3, or VD3) and ergocalciferol (vitamin D2, or VD2). Besides its major role in maintaining an adequate level of calcium and phosphate concentrations, vitamin D is involved in cell growth and differentiation and immune function. Recently, the association between vitamin D deficiency and the progression of fibrosis in chronic liver disease (CLD) was confirmed, given the hepatic activation process and high prevalence of vitamin D deficiency in these diseases. There are reports of vitamin D deficiency in CLD regardless of the etiology (chronic viral hepatitis, alcoholic cirrhosis, non-alcoholic fatty liver disease, primary biliary cirrhosis, or autoimmune hepatitis). Vitamin D binding protein (VDBP) is synthesized by the liver and has the role of binding and transporting vitamin D and its metabolites to the target organs. VDBP also plays an important role in inflammatory response secondary to tissue damage, being involved in the degradation of actin. As intense research during the last decades revealed the possible role of vitamin D in liver diseases, a deeper understanding of the vitamin D, vitamin D receptors (VDRs), and VDBP involvement in liver inflammation and fibrogenesis could represent the basis for the development of new strategies for diagnosis, prognosis, and treatment of liver diseases. This narrative review presents an overview of the evidence of the role of vitamin D and VDBP in CLD, both at the experimental and clinical levels.
Collapse
Affiliation(s)
- Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Claudia Sîrbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Gabriel Benţa
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandra Mititelu
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Vitamin D and the Kidney: Two Players, One Console. Int J Mol Sci 2022; 23:ijms23169135. [PMID: 36012412 PMCID: PMC9409427 DOI: 10.3390/ijms23169135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/08/2023] Open
Abstract
Vitamin D belongs to the group of liposoluble steroids mainly involved in bone metabolism by modulating calcium and phosphorus absorption or reabsorption at various levels, as well as parathyroid hormone production. Recent evidence has shown the extra-bone effects of vitamin D, including glucose homeostasis, cardiovascular protection, and anti-inflammatory and antiproliferative effects. This narrative review provides an overall view of vitamin D’s role in different settings, with a special focus on chronic kidney disease and kidney transplant.
Collapse
|
20
|
Formulation Strategies for Improving the Stability and Bioavailability of Vitamin D-Fortified Beverages: A Review. Foods 2022; 11:foods11060847. [PMID: 35327269 PMCID: PMC8955538 DOI: 10.3390/foods11060847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 12/26/2022] Open
Abstract
Vitamin D is a lipophilic bioactive that plays an important role in bone health. Fortification of beverages, such as milk, fruit juices, teas, and vegetable drinks, could be an efficient strategy to prevent vitamin D deficiency and its associated effects on health. This review summarizes the current understanding of beverage fortification strategies with vitamin D and the resulting effects on the stability, bioaccessibility, and sensory properties of the formulated products. The direct addition technique has been the conventional approach to fortifying beverages. In addition, encapsulation has been pointed out as a desirable delivery approach to increase stability, preserve bioactivity, and enhance the absorption of vitamin D in beverage systems. The literature reports the potential applicability of several methods for encapsulating vitamin D in beverages, including spray drying, micro/nanoemulsions, nanostructured lipid carriers, liposomes, and complexation to polymers. Some of these delivery systems have been assessed regarding vitamin D stability, but there is a lack of kinetic data that allow for the prediction of its stability under industrial processing conditions. Moreover, in some cases, the applicability of some of these delivery systems to real beverages as well as the in vivo efficacy were not evaluated; thus, fortification strategies with a global outreach are lacking.
Collapse
|
21
|
The Role of Macronutrients, Micronutrients and Flavonoid Polyphenols in the Prevention and Treatment of Osteoporosis. Nutrients 2022; 14:nu14030523. [PMID: 35276879 PMCID: PMC8839902 DOI: 10.3390/nu14030523] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is considered an age-related disorder of the skeletal system, characterized primarily by decreased bone mineral density (BMD), microstructural quality and an elevated risk of fragility fractures. This silent disease is increasingly becoming a global epidemic due to an aging population and longer life expectancy. It is known that nutrition and physical activity play an important role in skeletal health, both in achieving the highest BMD and in maintaining bone health. In this review, the role of macronutrients (proteins, lipids, carbohydrates), micronutrients (minerals—calcium, phosphorus, magnesium, as well as vitamins—D, C, K) and flavonoid polyphenols (quercetin, rutin, luteolin, kaempferol, naringin) which appear to be essential for the prevention and treatment of osteoporosis, are characterized. Moreover, the importance of various naturally available nutrients, whether in the diet or in food supplements, is emphasized. In addition to pharmacotherapy, the basis of osteoporosis prevention is a healthy diet rich mainly in fruits, vegetables, seafood and fish oil supplements, specific dairy products, containing a sufficient amount of all aforementioned nutritional substances along with regular physical activity. The effect of diet alone in this context may depend on an individual’s genotype, gene-diet interactions or the composition and function of the gut microbiota.
Collapse
|
22
|
Safety Assessment of Vitamin D and Its Photo-Isomers in UV-Irradiated Baker's Yeast. Foods 2021; 10:foods10123142. [PMID: 34945693 PMCID: PMC8701098 DOI: 10.3390/foods10123142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Vitamin D deficiency due to, e.g., nutritional and life style reasons is a health concern that is gaining increasing attention over the last two decades. Vitamin D3, the most common isoform of vitamin D, is only available in food derived from animal sources. However, mushrooms and yeast are rich in ergosterol. This compound can be converted into vitamin D2 by UV-light, and therefore act as a precursor for vitamin D. Vitamin D2 from UV-irradiated mushrooms has become an alternative source of vitamin D, especially for persons pursuing a vegan diet. UV-irradiated baker’s yeast (Saccharomyces cerevisiae) for the production of fortified yeast-leavened bread and baked goods was approved as a Novel Food Ingredient in the European Union, according to Regulation (EC) No. 258/97. The Scientific Opinion provided by the European Food Safety Authority Panel on Dietetic Products, Nutrition, and Allergies has assessed this Novel Food Ingredient as safe under the intended nutritional use. However, recent findings on the formation of side products during UV-irradiation, e.g., the photoproducts tachysterol and lumisterol which are compounds with no adequate risk assessment performed, have only been marginally considered for this EFSA opinion. Furthermore, proceedings in analytics can provide additional insights, which might open up new perspectives, also regarding the bioavailability and potential health benefits of vitamin D-fortified mushrooms and yeast. Therefore, this review is intended to give an overview on the current status of UV irradiation in mushrooms and yeast in general and provide a detailed assessment on the potential health effects of UV-irradiated baker’s yeast.
Collapse
|
23
|
Gallotti F, Turchiuli C, Lavelli V. Production of stable emulsions using β‐glucans extracted from
Pleurotus ostreatus
to encapsulate oxidizable compounds. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francesca Gallotti
- DeFENS, Department of Food, Environmental and Nutritional Sciences University of Milan Milan Italy
| | - Christelle Turchiuli
- UMR SayFood, Université Paris‐Saclay, INRAE, AgroParisTech Massy France
- Department Chimie Université Paris‐Saclay, IUT d'Orsay Orsay France
| | - Vera Lavelli
- DeFENS, Department of Food, Environmental and Nutritional Sciences University of Milan Milan Italy
| |
Collapse
|
24
|
Tiwari A, Singh G, Singh U, Sapra L, Rana V, Sharma V, Srivastava RK, Sharma S. Edible mushrooms: The potential game changer in alleviating vitamin D deficiency and improving human health. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Abhay Tiwari
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) New Delhi India
| | - Garima Singh
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) New Delhi India
| | - Umesh Singh
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) New Delhi India
| | - Leena Sapra
- Department of Biotechnology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Vikrant Rana
- Department of Applied Agriculture School of Basic and Applied Sciences Central University of Punjab Bathinda Punjab India
| | - Vasudha Sharma
- Department of Food Technology Jamia Hamdard New Delhi India
| | - Rupesh K. Srivastava
- Department of Biotechnology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Satyawati Sharma
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) New Delhi India
| |
Collapse
|
25
|
Pellegrino L, Marangoni F, Muscogiuri G, D’Incecco P, Duval GT, Annweiler C, Colao A. Vitamin D Fortification of Consumption Cow's Milk: Health, Nutritional and Technological Aspects. A Multidisciplinary Lecture of the Recent Scientific Evidence. Molecules 2021; 26:5289. [PMID: 34500722 PMCID: PMC8434398 DOI: 10.3390/molecules26175289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 01/24/2023] Open
Abstract
Vitamin D is essential in assuring bone health at all stages of life, but its non-skeletal effects are also essential: This vitamin impacts the physiology of the immune system, skeletal muscles and adipose tissue, glucose metabolism, skin, cardiovascular and reproductive systems, neuro-cognitive functions and cell division. The incidence of vitamin D deficiency is widespread worldwide, at any age, in young and healthy subjects, as well as in pregnant women and the elderly population, due to several factors, including inadequate sunlight exposure, skin pigmentation and coverage, adiposity, lifestyle and low dietary intakes. To overcome this problem, the fortification of foods that are consumed on a daily basis, such as milk, is strongly advisable. This opinion paper aims to discuss, in a multidisciplinary way, the current evidence supporting the importance of vitamin D in health and disease and the role of milk as an optimal carrier of this vitamin, to promote adequate intakes, highlighting its unique physico-chemical characteristics linked to both fat globule membrane and casein micelle structure. Moreover, it addresses the impact of industrial processing and storage of consumption milk on the stability of these structures, thus in determining vitamin D bioavailability and the achievement of adequate intakes.
Collapse
Affiliation(s)
- Luisa Pellegrino
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via G. Celoria 2, 20133 Milan, Italy;
| | - Franca Marangoni
- NFI—Nutrition Foundation of Italy, Viale Tunisia 38, 20124 Milan, Italy;
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.M.); (A.C.)
- UNESCO Chair for Health Education and Sustainable Development, Federico II University of Naples, Via S. Pansini 5, 80131 Naples, Italy
| | - Paolo D’Incecco
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via G. Celoria 2, 20133 Milan, Italy;
| | - Guillaume T. Duval
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, 49035 Angers, France; (G.T.D.); (C.A.)
| | - Cedric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, 49035 Angers, France; (G.T.D.); (C.A.)
- Department of Medical Biophysics, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N5X 4L2, Canada
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.M.); (A.C.)
- UNESCO Chair for Health Education and Sustainable Development, Federico II University of Naples, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|