1
|
Fernandes J, Gomes S, Reboredo FH, Pintado ME, Amaral O, Dias J, Alvarenga N. Clean Label Approaches in Cheese Production: Where Are We? Foods 2025; 14:805. [PMID: 40077507 PMCID: PMC11899541 DOI: 10.3390/foods14050805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The Clean Label concept has gained significant traction in the cheese industry due to consumer preferences for minimally processed cheeses free from synthetic additives. This review explores different approaches for applying Clean Label principles to the cheese industry while maintaining food safety, sensory quality, and shelf life. Non-thermal technologies, such as high-pressure processing (HPP), pulsed electric fields (PEF), ultra-violet (UV), and visible light (VL), are among the most promising methods that effectively control microbial growth while preserving the nutritional and functional properties of cheese. Protective cultures, postbiotics, and bacteriophages represent microbiological strategies that are natural alternatives to conventional preservatives. Another efficient approach involves plant extracts, which contribute to microbial control, and enhance cheese functionality and potential health benefits. Edible coatings, either alone or combined with other methods, also show promising applications. Despite these advantages, several challenges persist: higher costs of production and technical limitations, possible shorter shelf-life, and regulatory challenges, such as the absence of standardized Clean Label definitions and compliance complexities. Further research is needed to develop and refine Clean Label formulations, especially regarding bioactive peptides, sustainable packaging, and advanced microbial control techniques. Addressing these challenges will be essential for expanding Clean Label cheese availability while ensuring product quality and maintaining consumer acceptance.
Collapse
Affiliation(s)
- Jaime Fernandes
- UTI—Unidade de Tecnologia e Inovação, Instituto Nacional de Investigação Agrária e Veterinária IP, Quinta do Marquês, 2780-157 Oeiras, Portugal
- NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Sandra Gomes
- UTI—Unidade de Tecnologia e Inovação, Instituto Nacional de Investigação Agrária e Veterinária IP, Quinta do Marquês, 2780-157 Oeiras, Portugal
- NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Manuela E. Pintado
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Olga Amaral
- GeoBioTec Research Center, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- School of Agriculture, Polytechnic University of Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7006-554 Évora, Portugal
| | - João Dias
- GeoBioTec Research Center, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- School of Agriculture, Polytechnic University of Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7006-554 Évora, Portugal
| | - Nuno Alvarenga
- UTI—Unidade de Tecnologia e Inovação, Instituto Nacional de Investigação Agrária e Veterinária IP, Quinta do Marquês, 2780-157 Oeiras, Portugal
- GeoBioTec Research Center, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Merkel A, Rudolph-Schöpping G, Barone G, Suwal S, Lillevang SK, Ahrné L. Improving ultrafiltration efficiency of acidified skim milk using bipolar membrane electrodialysis: Impact on protein concentrate composition, process performance, and fouling. Food Res Int 2025; 200:115461. [PMID: 39779096 DOI: 10.1016/j.foodres.2024.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The efficiency of ultrafiltration (UF) of acidified skim milk (SM) is impaired by protein aggregation and mineral scaling. The aim of this study is to assess the potential of acidification by electrodialysis with bipolar membranes (EDBM), in comparison with citric acid (CA), prior to the UF process on filtration performance, fouling and composition of the protein concentrates. Electro-acidification, facilitated by a water-splitting reaction, decreased the pH of milk to ∼ 5.7 and caused partial demineralization (∼21.9 % ash removal), which increased protein concentration and reduced UF fouling. This resulted in a ∼ 34.7 % increase in average permeate flux and ∼ 9.5 % more efficient removal of calcium from the UF retentates compared to CA. The final ash content of the produced protein concentrates showed that the EDBM acidification resulted in an ash content of 5.76 ± 0.23 % on a dry basis, while the citric acid method resulted in an ash content of 6.63 ± 0.27 %, showing a reduction of ∼ 13.1 %. Additionally, electro-chemical and spectroscopic methods were employed to evaluate the ion-exchange membranes (IEMs). Minor changes were observed in the specific resistivity and permselectivity of the cation-exchange membranes (CMs), indicating the formation of fouling and inorganic scaling precipitates on the membrane surface due to the process. The FTIR analysis of both CMs and bipolar membranes (BMs) showed sorption of proteins on the surface. The FTIR and atomic force microscopy (AFM) results of UF membranes confirmed that acidification using CA led to increased fouling and reduced permeate flux, attributed to the aggregation of proteins and lipid residues compared to the EDBM acidification method. This study provides valuable insights into improving and enhancing UF performance while significantly reducing membrane fouling during the filtration of partially acidified dairy streams, by employing chemical-free green technologies.
Collapse
Affiliation(s)
- Arthur Merkel
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark.
| | - Gregor Rudolph-Schöpping
- Department of Process and Life Science Engineering, Lund University, Naturvetarvägen 14, 22100 Lund, Sweden
| | - Giovanni Barone
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Shyam Suwal
- Arla Foods Amba, Agro Food Park 19, 8200 Aarhus N, Denmark
| | | | - Lilia Ahrné
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark.
| |
Collapse
|
3
|
Kowalik J, Tarapata J, Lobacz A, Zulewska J. Properties of Rennet Gels from Retentate Produced by Cold Microfiltration of Heat-Treated and Microfiltered Skim Milk. Foods 2024; 13:3296. [PMID: 39456357 PMCID: PMC11507333 DOI: 10.3390/foods13203296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the production of rennet gels from β-casein-depleted retentates obtained through cold microfiltration (MF) of skim milk (SM) that was treated beforehand to ensure microbial safety. The treatments included thermization (65 °C, 20 s), pasteurization (72 °C, 15 s), and microfiltration (50 °C; 1.4 μm pore size). The reduction in β-casein content was 0.98, 0.51 and 0.90%, respectively. All treatments resulted in the partial aggregation of serum proteins, which were slightly concentrated in the retentates obtained post cold MF process. This aggregation, along with concentration effect, likely inhibited β-casein dissociation from casein micelles and permeation, particularly in pasteurized milk. Renneting and coagulation properties of the retentates were comparable to those of the respective SM samples, with no significant differences in syneresis, water-holding capacity, or protein hydration. Notably, the retentate from thermized SM, which showed the best performance with the highest β-casein reduction (0.98%), demonstrated shorter coagulation time compared to retentate from pasteurized milk or the corresponding unfiltered SM. Textural analysis revealed greater firmness, cohesiveness, and viscosity of retentate-based rennet gels compared to gels made from unfiltered SM, attributed to protein concentration during cold MF. Overall, this study successfully produced rennet gels from cold MF retentates without compromising their physicochemical properties.
Collapse
Affiliation(s)
- Jarosław Kowalik
- Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 7, 10-719 Olsztyn, Poland; (J.T.); (A.L.); (J.Z.)
| | | | | | | |
Collapse
|
4
|
Siddiqui SA, Khan S, Bahmid NA, Nagdalian AA, Jafari SM, Castro-Muñoz R. Impact of high-pressure processing on the bioactive compounds of milk - A comprehensive review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1632-1651. [PMID: 39049911 PMCID: PMC11263445 DOI: 10.1007/s13197-024-05938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 11/12/2023] [Accepted: 01/17/2024] [Indexed: 07/27/2024]
Abstract
High-pressure processing (HPP) is a promising alternative to thermal pasteurization. Recent studies highlighted the effectivity of HPP (400-600 MPa and exposure times of 1-5 min) in reducing pathogenic microflora for up to 5 logs. Analysis of modern scientific sources has shown that pressure affects the main components of milk including fat globules, lactose, casein micelles. The behavior of whey proteins under HPP is very important for milk and dairy products. HPP can cause significant changes in the quaternary (> 150 MPa) and tertiary (> 200 MPa) protein structures. At pressures > 400 MPa, they dissolve in the following order: αs2-casein, αs1-casein, k-casein, and β-casein. A similar trend is observed in the processing of whey proteins. HPP can affect the rate of milk fat adhering as cream with increased results at 100-250 MPa with time dependency while decreasing up to 70% at 400-600 MPa. Some studies indicated the lactose influencing casein on HP, with 10% lactose addition in case in suspension before exposing it to 400 MPa for 40 min prevents the formation of large casein micelles. Number of researches has shown that moderate pressures (up to 400 MPa) and mild heating can activate or stabilize milk enzymes. Pressures of 350-400 MPa for 100 min can boost the activity of milk enzymes by up to 140%. This comprehensive and critical review will benefit scientific researchers and industrial experts in the field of HPP treatment of milk and its effect on milk components. Graphical abstract
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - Sipper Khan
- Institute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), 55961 Yogyakarta, Indonesia
| | | | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Iran Food and Drug Administration, Halal Research Center of IRI, Ministry of Health and Medical Education, Tehran, Iran
| | - Roberto Castro-Muñoz
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80–233 Gdansk, Poland
| |
Collapse
|
5
|
Dons T, Kirkensgaard JJK, Candelario V, Andersen U, Ahrné L. Structural and physical-chemical properties of milk fat globules fractionated by a series of silicon carbide membranes. Food Res Int 2024; 192:114680. [PMID: 39147535 DOI: 10.1016/j.foodres.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024]
Abstract
Driven by the acknowledged health and functional properties of milk fat globules (MFGs), there is a growing interest to develop gentle methodologies for separation of fat from milk. In this study, separation of fat from raw milk and fractionation in streams containing MFGs of different size was achieved using a series of two silicon carbide ceramic membranes. A first step consisting of a 1.4 µm membrane aimed to concentrate the bulk of the fat, i.e. the larger MFGs (D[4,3] ∼ 4 µm) followed by a 0.5 µm fractionation aimed to concentrate the residual milk fat in the permeate, i.e. fraction with the smaller MFGs (D[4,3] ∼ 1.8-2.4 µm. The fat separation performance showed a yield of 92 % for the 1.4 µm membrane and 97 % for the 0.5 µm membrane. Both fat enriched retentates showed, by the confocal laser scanning microscopy, intact MFGs with limited damage in the MFG membrane. The fatty acid profile analysis and SAXS showed minor differences in fat acid composition and the crystallization behavior was related to differences in the fat content. The 0.5 µm permeate containing the smallest MFGs however showed larger aggregates and a trinomial particle size distribution, due to probably pore pressure induced coalescences. The series of silicon carbide membranes showed potential to concentrate some of MFGM proteins such as Periodic Schiff base 3/4 and cluster of differentiation 36 especially in the 0.5 µm retentates. A shift in casein to whey protein ratio from 80:20 (milk) to 50:50 was obtained in the final 0.5 µm permeate, which opens new opportunities for product development.
Collapse
Affiliation(s)
- Tobias Dons
- Ingredient and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
| | - Jacob J K Kirkensgaard
- Ingredient and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark; Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Victor Candelario
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Calle Virgen de África 7, Seville 41011, Spain
| | - Ulf Andersen
- Arla Innovation Centre, Arla Foods amba., Agro Food Park 19, DK-8200 Aarhus-N, Denmark
| | - Lilia Ahrné
- Ingredient and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark.
| |
Collapse
|
6
|
Fiege JL, Ohrt A, Hebig S, Schrader K, Gräf V, Martin D, Maul R, Stahl M. Vitamin D 3 formation in milk by UV treatment - Novel insights into a rediscovered process. J Dairy Sci 2024:S0022-0302(24)01088-9. [PMID: 39216521 DOI: 10.3168/jds.2024-25097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Vitamin D3 is essential for several functions in the human body and the demand is usually covered by natural reactions in skin with UV radiation delivered by the sun. But living beyond a latitude of 35° can lead to a lack of sufficient exposition to the deciding wavelength. Here, many countries fortify their milk prophylactically with artificial vitamin D3. However, the precursor molecule of vitamin D3 (7-deydrocholesterol) is already naturally located in the milk fat globule membrane. Thus, this study deals with the transformation of the naturally occurring 7-dehydrocholesterol into vitamin D3 through UV treatment of the milk - a mechanism that was observed a century ago only indirectly. Different parameters such as temperature (10 - 50°C), fluid flow regimen (turbulent vs. laminar thin film, i.e., 0.6 mm) and wavelength (254, 280 and 313 nm) were investigated in this study for their efficiencies. The UV dose of each experiment was measured with chemical actinometry delivering the actually applied dose reaching the milk. Thus, the connection between applied UV dose and generated vitamin D3 content in the milk measured quantitively with LC-MS/MS was evaluated here that both were not possible a hundred years ago. The experimental results revealed that temperature generally promotes the vitamin D3 formation at 254 nm. Further, a turbulent flow is not as efficiently treated as a laminar thin film flow that is as narrow as 0.6 mm. As expected from absorbance spectra of the precursor molecule 7-dehydrocholesterol, 280 nm turned out to be the most efficient wavelength, followed by intermediate success through irradiation with 254 nm and almost no effect by 313 nm. Generally, it was shown that vitamin D3 concentration of milk was easily increased by UV treatment with today's technologies and that adjustment of certain physical parameters have a significant effect on the efficiency.
Collapse
Affiliation(s)
- Jaayke L Fiege
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, D-76131 Karlsruhe, Germany.
| | - Alexandra Ohrt
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, D-24103 Kiel, Germany
| | - Stefan Hebig
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, D-76131 Karlsruhe, Germany
| | - Katrin Schrader
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, D-24103 Kiel, Germany
| | - Volker Gräf
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, D-76131 Karlsruhe, Germany
| | - Dierk Martin
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, D-24103 Kiel, Germany
| | - Ronald Maul
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, D-24103 Kiel, Germany
| | - Mario Stahl
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, D-76131 Karlsruhe, Germany
| |
Collapse
|
7
|
France TC, Bot F, Kelly AL, Crowley SV, O'Mahony JA. Physicochemical properties of micellar casein retentates generated at different microfiltration temperatures. J Dairy Sci 2024; 107:2721-2732. [PMID: 38101742 DOI: 10.3168/jds.2023-23918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023]
Abstract
Processing temperature has a significant influence on the composition and functionality of the resulting streams following microfiltration (MF) of skim milk. In this study, MF and diafiltration (DF) were performed at 4 or 50°C to produce β-casein (β-CN)-depleted and nondepleted (i.e., native casein profile) micellar casein isolate retentates, respectively. Microfiltration combined with extensive DF resulted in a 40% depletion of β-CN at 4°C, whereas no β-CN depletion occurred at 50°C. Microfiltration at 4°C led to higher transmission of calcium into permeates, with retentate generated at 4°C containing less total calcium compared with retentate generated at 50°C, based on the volume of retentate remaining. Higher heat stability at 120°C was measured for retentates generated at 4°C compared with those at 50°C, across all pH values measured. Retentates generated at 4°C also had significantly lower ionic calcium values at each pH compared with those generated at 50°C. Higher apparent viscosities at 4°C were measured for retentates generated at 4°C compared with retentates generated at 50°C, likely due to increased voluminosity of β-CN-depleted casein micelles. The results of this study provide new information on how changing the composition of MF retentate, by appropriate control of processing temperature and DF, can alter physicochemical properties of casein micelles, with potential implications for ingredient functionality.
Collapse
Affiliation(s)
- Thomas C France
- School of Food and Nutritional Sciences, University College Cork, Cork T12 Y337, Ireland
| | - Francesca Bot
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork T12 Y337, Ireland
| | - Shane V Crowley
- School of Food and Nutritional Sciences, University College Cork, Cork T12 Y337, Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork T12 Y337, Ireland.
| |
Collapse
|
8
|
Chen X, Fan R, Wang Y, Munir M, Li C, Wang C, Hou Z, Zhang G, Liu L, He J. Bovine milk β-casein: Structure, properties, isolation, and targeted application of isolated products. Compr Rev Food Sci Food Saf 2024; 23:e13311. [PMID: 38445543 DOI: 10.1111/1541-4337.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
β-Casein, an important protein found in bovine milk, has significant potential for application in the food, pharmaceutical, and other related industries. This review first introduces the composition, structure, and functional properties of β-casein. It then reviews the techniques for isolating β-casein. Chemical and enzymatic isolation methods result in inactivity of β-casein and other components in the milk, and it is difficult to control the production conditions, limiting the utilization range of products. Physical technology not only achieves high product purity and activity but also effectively preserves the biological activity of the components. The isolated β-casein needs to be utilized effectively and efficiently for various purity products in order to achieve optimal targeted application. Bovine β-casein, which has a purity higher than or close to that of breast β-casein, can be used in infant formulas. This is achieved by modifying its structure through dephosphorylation, resulting in a formula that closely mimics the composition of breast milk. Bovine β-casein, which is lower in purity than breast β-casein, can be maximized for the preparation of functional peptides and for use as natural carriers. The remaining byproducts can be utilized as food ingredients, emulsifiers, and carriers for encapsulating and delivering active substances. Thus, realizing the intensive processing and utilization of bovine β-casein isolation. This review can promote the industrial production process of β-casein, which is beneficial for the sustainable development of β-casein as a food and material. It also provides valuable insights for the development of other active substances in milk.
Collapse
Affiliation(s)
- Xiaoqian Chen
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Rui Fan
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Yuanbin Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Maliha Munir
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Caiyun Wang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Zhanqun Hou
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Libo Liu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Jian He
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| |
Collapse
|
9
|
Dons T, Candelario V, Andersen U, Ahrné LM. Gentle milk fat separation using silicon carbide ceramic membranes. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Foti P, Occhipinti PS, Russo N, Scilimati A, Miciaccia M, Caggia C, Perrone MG, Randazzo CL, Romeo FV. Olive Mill Wastewater Fermented with Microbial Pools as a New Potential Functional Beverage. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020646. [PMID: 36677704 PMCID: PMC9866608 DOI: 10.3390/molecules28020646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Olive mill wastewater (OMWW) represents a by-product but also a source of biologically active compounds, and their recycling is a relevant strategy to recover income and to reduce environmental impact. The objective of the present study was to obtain a new functional beverage with a health-promoting effect starting from OMWW. Fresh OMWW were pre-treated through filtration and/or microfiltration and subjected to fermentation using strains belonging to Lactiplantibacillus plantarum, Candida boidinii and Wickerhamomyces anomalus. During fermentation, phenolic content and hydroxytyrosol were monitored. Moreover, the biological assay of microfiltered fermented OMWW was detected versus tumor cell lines and as anti-inflammatory activity. The results showed that in microfiltered OMWW, fermentation was successfully conducted, with the lowest pH values reached after 21 days. In addition, in all fermented samples, an increase in phenol and organic acid contents was detected. Particularly, in samples fermented with L. plantarum and C. boidinii in single and combined cultures, the concentration of hydroxytyrosol reached values of 925.6, 902.5 and 903.5 mg/L, respectively. Moreover, biological assays highlighted that fermentation determines an increase in the antioxidant and anti-inflammatory activity of OMWW. Lastly, an increment in the active permeability on Caco-2 cell line was also revealed. In conclusion, results of the present study confirmed that the process applied here represents an effective strategy to achieve a new functional beverage.
Collapse
Affiliation(s)
- Paola Foti
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Paride S. Occhipinti
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- ProBioEtna srl, Spin-Off of University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- ProBioEtna srl, Spin-Off of University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- CERNUT (Interdepartmental Research Centre in Nutraceuticals and Health Products), University of Catania, Via le A. Doria 6, 95125 Catania, Italy
- Correspondence:
| | - Maria Grazia Perrone
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Cinzia L. Randazzo
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- ProBioEtna srl, Spin-Off of University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- CERNUT (Interdepartmental Research Centre in Nutraceuticals and Health Products), University of Catania, Via le A. Doria 6, 95125 Catania, Italy
| | - Flora V. Romeo
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Olivico-Tura, Frutticoltura e Agrumicoltura, Corso Savoia 190, 95024 Acireale, Italy
| |
Collapse
|
11
|
France TC, Kelly AL, Crowley SV, O’Mahony JA. Influence of processing temperature on plasmin activity and proteolysis in process streams from cold microfiltration of skim milk. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Ren J, Liao M, Ma L, Chen F, Liao X, Hu X, Miao S, Fitzpatrick J, Ji J. Effect of spray freeze drying on the structural modification and rehydration characteristics of micellar casein powders. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Saldo J, Sendra E. Recent Advances and Trends in the Dairy Field. Foods 2022; 11:foods11131956. [PMID: 35804771 PMCID: PMC9265648 DOI: 10.3390/foods11131956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Jordi Saldo
- Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), Animal and Food Science Department, Facultat de Veterinària, Edifici V. Campus de la UAB, 08193 Bellaterra, Barcelona, Spain;
| | - Esther Sendra
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel, km 3.2, 03312 Orihuela, Alicante, Spain
- Correspondence:
| |
Collapse
|
14
|
Kiełczewska K, Dąbrowska A, Bielecka MM, Dec B, Baranowska M, Ziajka J, Zhennai Y, Żulewska J. Protein Preparations as Ingredients for the Enrichment of Non-Fermented Milks. Foods 2022; 11:1817. [PMID: 35804635 PMCID: PMC9266225 DOI: 10.3390/foods11131817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Milk enriched with functional ingredients of milk proteins delivers health and nutritional benefits, and it can be particularly recommended to consumers with increased protein requirements. The aim of this study was to evaluate the applicability of casein and serum protein preparations obtained by membrane filtration in the laboratory as additives to non-fermented milks, as compared with commercial protein, preparations (whey protein isolate or concentrate and casein concentrate). The addition of protein preparations increased the pH, viscosity and heat stability of non-fermented milks. Milks enriched with whey proteins were characterized by a higher content of valine and isoleucine and a lower content of leucine, lysine and arginine. Addition of casein or whey protein concentrate decreased the phosphorus content and increased the calcium content of milk, but only in the products enriched with casein or whey protein concentrate. Color saturation was higher in products fortified with protein preparations obtained in the laboratory and commercial whey protein concentrate. Milk enriched with whey protein isolate, followed by milk serum protein concentrate, received the highest scores in the sensory evaluation. The presented results make a valuable contribution to the production of milks enriched with various protein fractions. The study proposes the possibility of production of protein preparations and milks enhanced with protein preparations, which can be implemented in industrial dairy plants.
Collapse
Affiliation(s)
- Katarzyna Kiełczewska
- Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury, Oczapowskiego 7, 10-719 Olsztyn, Poland; (K.K.); (A.D.); (B.D.); (M.B.); (J.Z.); (J.Ż.)
| | - Aneta Dąbrowska
- Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury, Oczapowskiego 7, 10-719 Olsztyn, Poland; (K.K.); (A.D.); (B.D.); (M.B.); (J.Z.); (J.Ż.)
| | - Marika Magdalena Bielecka
- Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury, Oczapowskiego 7, 10-719 Olsztyn, Poland; (K.K.); (A.D.); (B.D.); (M.B.); (J.Z.); (J.Ż.)
| | - Bogdan Dec
- Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury, Oczapowskiego 7, 10-719 Olsztyn, Poland; (K.K.); (A.D.); (B.D.); (M.B.); (J.Z.); (J.Ż.)
| | - Maria Baranowska
- Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury, Oczapowskiego 7, 10-719 Olsztyn, Poland; (K.K.); (A.D.); (B.D.); (M.B.); (J.Z.); (J.Ż.)
| | - Justyna Ziajka
- Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury, Oczapowskiego 7, 10-719 Olsztyn, Poland; (K.K.); (A.D.); (B.D.); (M.B.); (J.Z.); (J.Ż.)
| | - Yang Zhennai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Justyna Żulewska
- Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury, Oczapowskiego 7, 10-719 Olsztyn, Poland; (K.K.); (A.D.); (B.D.); (M.B.); (J.Z.); (J.Ż.)
| |
Collapse
|
15
|
Fu HY, Hseu RS. Safety assessment of the fungal immunomodulatory protein from Ganoderma microsporum (GMI) derived from engineered Pichia pastoris: Genetic toxicology, a 13-week oral gavage toxicity study, and an embryo-fetal developmental toxicity study in Sprague-Dawley rats. Toxicol Rep 2022; 9:1240-1254. [DOI: 10.1016/j.toxrep.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
|
16
|
Xia X, Tobin JT, Fenelon MA, Mcsweeney PLH, Sheehan JJ. Production, composition and preservation of micellar casein concentrate and its application in cheesemaking: A review. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaofeng Xia
- Teagasc Food Research Centre Moorepark Fermoy Co. Cork P61 C996
- School of Food and Nutritional Sciences University College Cork Cork T12 YN60 Ireland
| | - John T Tobin
- Teagasc Food Research Centre Moorepark Fermoy Co. Cork P61 C996
| | - Mark A Fenelon
- Teagasc Food Research Centre Moorepark Fermoy Co. Cork P61 C996
| | - Paul L H Mcsweeney
- School of Food and Nutritional Sciences University College Cork Cork T12 YN60 Ireland
| | | |
Collapse
|