1
|
Paiva EM, Hyttinen E, Dönsberg T, Barth D. Biological contaminants analysis in microalgae culture by UV-vis spectroscopy and machine learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125690. [PMID: 39778393 DOI: 10.1016/j.saa.2024.125690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
This study elucidates the utility and efficacy of UV-visible spectroscopy for the detection and characterization of biological contaminants within microalgae cultures, augmented by machine learning algorithms. Biological contamination, exemplified by flagellates and rotifers, poses a significant concern due to its potential to rapidly devastate entire cultures, thus jeopardizing commercial viability. Conventional analytical methods for monitoring contamination, such as microscopy and cytometry, are often labor-intensive, reliant on specialized expertise for microorganism identification, and may lack specificity in discerning the nature of contamination, impeding timely intervention. UV-visible spectroscopy offers a compelling solution by overcoming many of these challenges, affording specificity in analysis, real-time monitoring capabilities, and automation, owing to the intricate pigment chemistry inherent in the microalgae realm, which generates distinct UV-visible spectra. Through the measuring of contaminated and uncontaminated samples, coupled with machine learning analysis of their respective spectra, this study explores the underlying biochemical principles driving spectral data, thereby justifying the efficacy of the technique. The findings underscore the wealth of information encapsulated within UV-visible spectral data, which can be effectively harnessed through classification algorithms for early-stage identification of contamination in real-time applications.
Collapse
Affiliation(s)
- Eduardo Maia Paiva
- VTT Technical Research Centre of Finland, Tekniikantie 1, 02150 Espoo, Finland.
| | - Eevi Hyttinen
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, 02044 Espoo, Finland
| | - Timo Dönsberg
- VTT Technical Research Centre of Finland, Tekniikantie 1, 02150 Espoo, Finland
| | - Dorothee Barth
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, 02044 Espoo, Finland
| |
Collapse
|
2
|
Nguyen AQ, Mohammadi M, Alian M, Muralitharan G, Chauhan VS, Balan V. Exploring the versatility of Porphyridium sp.: A comprehensive review of cultivation, bio-product extraction, purification, and characterization techniques. Biotechnol Adv 2024; 77:108471. [PMID: 39437877 DOI: 10.1016/j.biotechadv.2024.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Interest in red microalgae of the Porphyridium genus has surged due to their richness in phycobiliproteins, polyunsaturated fatty acids, and sulfated polysaccharides. These biomasses and their derivatives find applications across food, feed, nutraceutical, pharmaceutical, and cosmetic industries. A deeper understanding of their properties and extraction methods is essential to optimize downstream processing. This paper comprehensively reviews Porphyridium sp., focusing on cultivation techniques, bioproduct extraction, purification, and characterization. It delves into protein, lipid, and polysaccharide extraction, considering the influence of culture conditions on biomass yield. Various methods like chromatography, electrophoresis, and membrane-based techniques for cell lysis and bioproduct recovery are explored, highlighting their pros and cons. By offering diverse insights, this review aims to inspire innovative research and industry progress in red microalgae biotechnology, contributing to sustainable solutions across sectors.
Collapse
Affiliation(s)
- Anh Quynh Nguyen
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Maedeh Mohammadi
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Mahsa Alian
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Gangatharan Muralitharan
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirapalli 620024, Tamilnadu, India; National Repository for Microalgae and Cyanobacteria - Freshwater and Marine (NRMC - F & M), Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Vikas Singh Chauhan
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570 020, Karnataka, India
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA.
| |
Collapse
|
3
|
Chen Y, Li Q, Xu B, Xiang W, Li A, Li T. Extraction Optimization of Polysaccharides from Wet Red Microalga Porphyridium purpureum Using Response Surface Methodology. Mar Drugs 2024; 22:498. [PMID: 39590778 PMCID: PMC11595995 DOI: 10.3390/md22110498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Porphyridium is a unicellular marine microalga that is rich in polysaccharides and has excellent biological activities. Optimizing the extraction of polysaccharides can significantly improve the value of Porphyridium biomass. In the present study, response surface methodology was employed to optimize the extraction conditions of polysaccharides, including extraction time, extraction temperature, and biomass-to-water ratio. Furthermore, microwave-assisted extraction was used to improve the yield of polysaccharides further. The results showed that increasing the extraction temperature and extraction time could enhance the yield of polysaccharides. The multiple regression analysis of RSM indicated that the model could be employed to optimize the extraction of polysaccharides. The optimal extraction time, extraction temperature, and biomass-to-water ratio were 45 min, 87 °C, and 1:63 g mL-1, respectively. Under these optimal conditions, the maximum yield of polysaccharides was 23.66% DW, which well matched the predicted yield. The results indicated that the extraction temperature was the most significant condition affecting the yield of polysaccharides. The microwave-assisted extraction could further improve the yield of polysaccharides to 25.48% DW. In conclusion, hot water with microwave-assisted extraction was effective for polysaccharide extraction in P. purpureum.
Collapse
Affiliation(s)
- Yi Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.C.); (B.X.); (W.X.)
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China;
| | - Qianmei Li
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China;
| | - Bingqi Xu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.C.); (B.X.); (W.X.)
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.C.); (B.X.); (W.X.)
| | - Aifen Li
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China;
| | - Tao Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.C.); (B.X.); (W.X.)
| |
Collapse
|
4
|
Piera A, Espada JJ, Morales V, Rodríguez R, Vicente G, Bautista LF. Optimised phycoerythrin extraction method from Porphyridium sp. combining imidazolium-based ionic liquids. Heliyon 2024; 10:e34957. [PMID: 39149077 PMCID: PMC11325355 DOI: 10.1016/j.heliyon.2024.e34957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Phycoerythrin (PE) extraction from Porphyridium sp. was studied employing ultrasound-assisted extraction combined with aqueous mixtures of two imidazolium-based ionic liquids (ILs) simultaneously, marking a significant novelty. A face-centred central composite design and response surface optimised PE yield (EPE), considering the effects of ionic liquid concentration (IL), [Emim][EtSO4]/[Bmim][EtSO4] mass ratio (E/B), biomass concentration (BM), and time (t). Improvements in EPE by 300 % and 115 % were achieved compared to a phosphate buffer solution and the freeze-thaw method, respectively. Temperature and pH effects were examined independently, leading to the determination of optimal operating conditions: BM = 10 mg mL-1, IL = 18.6 wt%, E/B = 0.78/0.22, t = 10 min, T = 35 °C, and pH = 7.5. Results indicated the potential for reusing the ILs for at least five consecutive extraction cycles, maintaining an EPE of 94.2 % compared to fresh ones. This underscores the success and innovation of the developed technology in enhancing PE extraction from Porphyridium sp.
Collapse
Affiliation(s)
- Alejandro Piera
- Department of Chemical and Environmental Technology. ESCET, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
| | - Juan J Espada
- Department of Chemical, Energy and Mechanical Technology. ESCET, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
| | - Victoria Morales
- Department of Chemical and Environmental Technology. ESCET, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
| | - Rosalía Rodríguez
- Department of Chemical, Energy and Mechanical Technology. ESCET, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
| | - Gemma Vicente
- Department of Chemical, Energy and Mechanical Technology. ESCET, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
- Instituto de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
| | - Luis Fernando Bautista
- Department of Chemical and Environmental Technology. ESCET, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
- Instituto de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos. Tulipán S/n, 28933, Móstoles, Madrid, Spain
| |
Collapse
|
5
|
Vergel-Suarez AH, García-Martínez JB, López-Barrera GL, Urbina-Suarez NA, Barajas-Solano AF. Influence of Critical Parameters on the Extraction of Concentrated C-PE from Thermotolerant Cyanobacteria. BIOTECH 2024; 13:21. [PMID: 39051336 PMCID: PMC11270330 DOI: 10.3390/biotech13030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
This work aimed to identify the influence of pH, molarity, w/v fraction, extraction time, agitation, and either a sodium (Na2HPO4·7H2O-NaH2PO4·H2O) or potassium buffer (K2HPO4-KH2PO4) used in the extraction of C-phycoerythrin (C-PE) from a thermotolerant strain of Potamosiphon sp. An experimental design (Minimum Run Resolution V Factorial Design) and a Central Composite Design (CCD) were used. According to the statistical results of the first design, the K-PO4 buffer, pH, molarity, and w/v fraction are vital factors that enhance the extractability of C-PE. The construction of a CCD design of the experiments suggests that the potassium phosphate buffer at pH 5.8, longer extraction times (50 min), and minimal extraction speed (1000 rpm) are ideal for maximizing C-PE concentration, while purity is unaffected by the design conditions. This optimization improves extraction yields and maintains the desired bright purple color of the phycobiliprotein.
Collapse
Affiliation(s)
| | | | | | | | - Andrés F. Barajas-Solano
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cúcuta 540003, Colombia; (A.H.V.-S.); (J.B.G.-M.); (G.L.L.-B.); (N.A.U.-S.)
| |
Collapse
|
6
|
Yahyaoui K, Traikia M, Rihouey C, Picton L, Gardarin C, Ksouri WM, Laroche C. Chemical characterization of polysaccharides from Gracilaria gracilis from Bizerte (Tunisia). Int J Biol Macromol 2024; 266:131127. [PMID: 38527684 DOI: 10.1016/j.ijbiomac.2024.131127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Polysaccharides were extracted from Gracilaria gracilis collected from Manzel Jemil Lake in Bizerte Tunisia, with two different solvents (water and NaOH 0.3 M). Different assays were performed on samples (total sugars, neutral sugars, uronic acids, anhydrogalactose, proteins, sulphates, pyruvates), followed by high performance anion-exchange chromatography (HPAEC) to observe the monosaccharide composition, high pressure size exclusion chromatography with multi-angle laser light scattering (HPSEC-MALS) to obtain the molecular mass, Fourier transform infrared spectroscopy (FTIR), and 1D and 2D nuclear magnetic resonance (NMR) to access to structural data. Results have shown that the polysaccharide extracted from Gracilaria gracilis collected from Manzel Jemil Lake in Bizerte Tunisia, is of agar type but with high molecular mass and some original structural features. Hence, the sample was found to contain 9 % of pyruvate groups and is partly sulphated at the C4 of β-d-galactose and methylated on C2 of anhydro-α-l-galactose. The polymer from G. gracilis from Bizerte thus presents a never described structure that could be interesting for further rheological or biological activities applications.
Collapse
Affiliation(s)
- K Yahyaoui
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopark of Borj-Cedria, Hammam-Lif, Tunisia
| | - M Traikia
- Université Clermont Auvergne, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - C Rihouey
- Université de Rouen, Laboratoire Polymères Biopolymères Surfaces, F-76821 Mont Saint Aignan, France
| | - L Picton
- Université de Rouen, Laboratoire Polymères Biopolymères Surfaces, F-76821 Mont Saint Aignan, France
| | - C Gardarin
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - W Megdiche Ksouri
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopark of Borj-Cedria, Hammam-Lif, Tunisia
| | - C Laroche
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
7
|
Li T, Li C, Wang W, Wu H, Wu H, Xu J, Xiang W. Reconstruction of Long-Chain Polyunsaturated Acid Synthesis Pathways in Marine Red Microalga Porphyridium cruentum Using Lipidomics and Transcriptomics. Mar Drugs 2024; 22:82. [PMID: 38393053 PMCID: PMC10890038 DOI: 10.3390/md22020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The marine red microalga Porphyridium can simultaneously synthesize long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (C20:5, EPA) and arachidonic acid (C20:4, ARA). However, the distribution and synthesis pathways of EPA and ARA in Porphyridium are not clearly understood. In this study, Porphyridium cruentum CCALA 415 was cultured in nitrogen-replete and nitrogen-limited conditions. Fatty acid content determination, transcriptomic, and lipidomic analyses were used to investigate the synthesis of ARA and EPA. The results show that membrane lipids were the main components of lipids, while storage lipids were present in a small proportion in CCALA 415. Nitrogen limitation enhanced the synthesis of storage lipids and ω6 fatty acids while inhibiting the synthesis of membrane lipids and ω3 fatty acids. A total of 217 glycerolipid molecular species were identified, and the most abundant species included monogalactosyldiglyceride (C16:0/C20:5) (MGDG) and phosphatidylcholine (C16:0/C20:4) (PC). ARA was mainly distributed in PC, and EPA was mainly distributed in MGDG. Among all the fatty acid desaturases (FADs), the expressions of Δ5FAD, Δ6FAD, Δ9FAD, and Δ12FAD were up-regulated, whereas those of Δ15FAD and Δ17FAD were down-regulated. Based on these results, only a small proportion of EPA was synthesized through the ω3 pathway, while the majority of EPA was synthesized through the ω6 pathway. ARA synthesized in the ER was likely shuttled into the chloroplast by DAG and was converted into EPA by Δ17FAD.
Collapse
Affiliation(s)
- Tao Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (T.L.); (C.L.); (W.W.); (H.W.); (H.W.)
| | - Chulin Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (T.L.); (C.L.); (W.W.); (H.W.); (H.W.)
| | - Weinan Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (T.L.); (C.L.); (W.W.); (H.W.); (H.W.)
| | - Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (T.L.); (C.L.); (W.W.); (H.W.); (H.W.)
| | - Houbo Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (T.L.); (C.L.); (W.W.); (H.W.); (H.W.)
| | - Jin Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (T.L.); (C.L.); (W.W.); (H.W.); (H.W.)
| |
Collapse
|
8
|
Makay K, Griehl C, Grewe C. Development of a high-performance thin-layer chromatography-based method for targeted glycerolipidome profiling of microalgae. Anal Bioanal Chem 2024; 416:1149-1164. [PMID: 38172195 PMCID: PMC10850188 DOI: 10.1007/s00216-023-05101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
The conditionally essential very-long-chain polyunsaturated fatty acids (VLC-PUFAs), such as eicosapentaenoic acid (EPA, C20:5 n-3), play a vital role in human nutrition. Their biological activity is thereby greatly influenced by the distinct glycerolipid molecule that they are esterified to. Here, microalgae differ from the conventional source, fish oil, both in quantity and distribution of VLC-PUFAs among the glycerolipidome. Therefore, the aim of this study was to develop a fast and reliable one-dimensional high-performance thin-layer chromatography (HPTLC)-based method that allows the separation and quantification of the main microalgal glycerolipid classes (e.g., monogalactosyldiacylglycerol (MGDG), sulfoquinovosyl diacylglycerol (SQDG), phosphatidylglycerol (PG)), as well as the subsequent analysis of their respective fatty acid distribution via gas chromatography (GC) coupled to mass spectrometry (MS). Following optimization, method validation was carried out for 13 different lipid classes, based on the International Conference on Harmonization (ICH) guidelines. In HPTLC, linearity was effective between 100 and 2100 ng, with a limit of quantification between 62.99 and 90.09 ng depending on the glycerolipid class, with strong correlation coefficients (R2 > 0.995). The recovery varied between 93.17 and 108.12%, while the inter-day precision measurements showed coefficients of variation of less than 8.85%, close to the limit of detection. Applying this method to crude lipid extracts of four EPA producing microalgae of commercial interest, the content of different glycerolipid classes was assessed together with the respective FA distribution subsequent to band elution. The results showed that the described precise and accurate HPTLC method offers the possibility to be used routinely to follow variations in the glycerolipid class levels throughout strain screening, cultivation, or bioprocessing. Thus, additional quantitative analytical information on the complex lipidome of microalgae can be obtained, especially for n-3 and n-6 enriched lipid fractions.
Collapse
Affiliation(s)
- Kolos Makay
- Research Group of Bioprocess Engineering, Center of Life Sciences of Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany
| | - Carola Griehl
- Competence Center Algal Biotechnology, Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany
| | - Claudia Grewe
- Research Group of Bioprocess Engineering, Center of Life Sciences of Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany.
| |
Collapse
|
9
|
Tsvetanova FV, Boyadzhieva SS, Coelho JAP, Yankov DS, Stateva RP. Sustainable Transformation of Two Algal Species of Different Genera to High-Value Chemicals and Bioproducts. Molecules 2023; 29:156. [PMID: 38202739 PMCID: PMC10780321 DOI: 10.3390/molecules29010156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
This study investigates the potential of two algae species from different genera, namely the recently isolated Scenedesmus obliquus BGP and Porphyridium cruentum, from the perspective of their integral sustainable transformation to valuable substances. Conventional Soxhlet and environmentally friendly supercritical fluid extraction were applied to recover oils from the species. The extracts were characterized through analytical techniques, such as GC-Fid and LC-MS/MS, which allowed their qualitative and quantitative differentiation. Thus, P. cruentum oils contained up to 43% C20:4 and C20:5 fatty acids, while those of S. obliquus BGP had only residual amounts. The LC-MS/MS analysis of phenolic compounds in the S. obliquus BGP and P. cruentum extracts showed higher content of 3-OH-4-methoxybenzoic acid and kaempferol 3-O-glycoside in the former and higher amounts of ferulic acid in the latter. Total phenolic content and antioxidant activity of the oils were also determined and compared. The compositional analysis of the oil extracts revealed significant differences and varying potentialities based on their genera and method of extraction. To the best of our knowledge our work is unique in providing such detailed information about the transformation prospects of the two algae species to high-value chemicals and bioproducts.
Collapse
Affiliation(s)
- Flora V. Tsvetanova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.V.T.); (S.S.B.); (D.S.Y.)
| | - Stanislava S. Boyadzhieva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.V.T.); (S.S.B.); (D.S.Y.)
| | - Jose A. Paixão Coelho
- Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais 1, 1049-001 Lisboa, Portugal
| | - Dragomir S. Yankov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.V.T.); (S.S.B.); (D.S.Y.)
| | - Roumiana P. Stateva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.V.T.); (S.S.B.); (D.S.Y.)
| |
Collapse
|
10
|
Liang J, Rao ZH, Jiang SL, Wang S, Kuang HX, Xia YG. Structure of an unprecedent glucuronoxylogalactoglucomannan from fruit bodies of Auricularia auricula-judae (black woody ear). Carbohydr Polym 2023; 315:120968. [PMID: 37230634 DOI: 10.1016/j.carbpol.2023.120968] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
An unprecedent glucuronoxylogalactoglucomannan (GXG'G″M), ME-2 (Mw, 2.60 × 105 g/mol; O-acetyl % = 16.7 %), was isolated and purified from water extracts of Auricularia auricula-judae (black woody ear). Firstly, due to much higher O-acetyl contents, we prepared its fully deacetylated products (dME-2; Mw, 2.13 × 105 g/mol) for convenient structure survey. The repeating structure-unit of dME-2 was readily proposed based on Mw determination, monosaccharide compositions, methylation analysis, free-radical degradation and 1/2D NMR spectroscopy. The dME-2 was identified as a highly branched polysaccharide with an average of 10 branches per 10 sugar backbone units. The backbone was only repeating →3)-α-Manp-(1→ residues, substituted at the C-2, C-6 and C-2,6 positions. The side chains included β-GlcAp-(1→, β-Xylp-(1→, α-Manp-(1→, α-Galp-(1→ and β-Glcp-(1→. Secondly, the complex substituted positions of O-acetyl groups in ME-2 were determined to be at C-2, C-4, C-6 and C-4,6 in the backbone and at C-2 and C-2,3 in some side chains. Finally, the anti-inflammatory activity of ME-2 was preliminarily explored on LPS-stimulated THP-1 cells. The above date not only provided the first example for structural studies of GXG'G″M type polysaccharides, but also facilitated development and application of black woody ear polysaccharides as medicinal agents or functional dietary supplements.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Zi-Hao Rao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Si-Liang Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Shu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
11
|
Vergel-Suarez AH, García-Martínez JB, López-Barrera GL, Barajas-Solano AF, Zuorro A. Impact of Biomass Drying Process on the Extraction Efficiency of C-Phycoerythrin. BIOTECH 2023; 12:biotech12020030. [PMID: 37218747 DOI: 10.3390/biotech12020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Drying the biomass produced is one of the critical steps to avoid cell degradation; however, its high energy cost is a significant technological barrier to improving this type of bioprocess's technical and economic feasibility. This work explores the impact of the biomass drying method of a strain of Potamosiphon sp. on the extraction efficiency of a phycoerythrin-rich protein extract. To achieve the above, the effect of time (12-24 h), temperature (40-70 °C), and drying method (convection oven and dehydrator) were determined using an I-best design with a response surface. According to the statistical results, the factors that most influence the extraction and purity of phycoerythrin are temperature and moisture removal by dehydration. The latter demonstrates that gentle drying of the biomass allows removing the most significant amount of moisture from the biomass without affecting the concentration or quality of temperature-sensitive proteins.
Collapse
Affiliation(s)
- Ariadna H Vergel-Suarez
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Janet B García-Martínez
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Germán L López-Barrera
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Andrés F Barajas-Solano
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials, and Environment, Sapienza University, Via Eudossiana 18, 00184 Roma, Italy
| |
Collapse
|
12
|
Tsvetanova F, Yankov D. Bioactive Compounds from Red Microalgae with Therapeutic and Nutritional Value. Microorganisms 2022; 10:2290. [PMID: 36422361 PMCID: PMC9693049 DOI: 10.3390/microorganisms10112290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
Red microalgae represent a natural reservoir of beneficial substances with applications in different industrial sectors. They are rich in natural biomolecules known for their antihypertensive, antioxidant, antimicrobial, antiviral, anti-inflammatory, antitumor, and anticoagulant activities. Many red microalgae are a source of vitamins, minerals, photochemicals, polyunsaturated fatty acids, and a wide spectrum of polysaccharides. The content of their valuable compounds and their activities have turned red microalgae into cellular factories of special interest in food, nutraceutical, and pharmaceutical industries. Like all microalgae, the red ones are superior to traditional crops for the aims of biotechnology as they are renewable sources widely available in great quantities and are easy to culture. Moreover, some of the most studied red microalgae are generally recognized as safe. This review summarizes the valuable biochemicals from red microalgae and highlights their health and nutritional benefits.
Collapse
|
13
|
Microalgae Strain Porphyridium purpureum for Nutrient Reduction in Dairy Wastewaters. SUSTAINABILITY 2022. [DOI: 10.3390/su14148545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper has approached the study of dairy wastewater treatment and the simultaneous biocompound production by Porphyridium purpureum under continuous light and under a day–night cycle. The main goals were to achieve a reduction in the lactose content of the cheese wastewater that was tested and, at the same time, to obtain added value from the produced compounds, so as to increase the economic value of the process. The results show that biomass production increases proportionally with the concentration of lactose for both of the illumination options. The lactose concentration in the waste stream was reduced over 90% in just 7 days. The exopolysaccharide concentration in the growth medium increased with lactose availability. For the samples that were under constant light stress, the concentration of phycobiliproteins was highest when there was small amounts of lactose in the medium. The content of pigments was higher in the case of the day–night cycle of illumination; these being affected by stress factors such as continuous light and high lactose concentration. The results that were obtained prove that dairy wastewaters that are rich in lactose can be used efficiently for the growth of Porphyridium purpureum, achieving an increase in the biomass concentration and a large reduction of the lactose from this waste stream while obtaining a microalgae biomass that is rich in valuable compounds.
Collapse
|