1
|
Pais-Costa AJ, Marques A, Oliveira H, Gonçalves A, Camacho C, Augusto HC, Nunes ML. New Perspectives on Canned Fish Quality and Safety on the Road to Sustainability. Foods 2025; 14:99. [PMID: 39796393 PMCID: PMC11719813 DOI: 10.3390/foods14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 01/13/2025] Open
Abstract
Canning extends the shelf life of seafood products while preserving their quality. It is increasingly considered a more sustainable food processing method due to the primary fishing methods used for key species and the lower energy costs compared to the production of fresh and frozen fish. However, canning can change key components, allow some contaminants to persist, and generate undesirable compounds. This review revisits the effects of canning on product quality and highlights the potential hazards that may compromise safety. It also examines emerging trends in product development, particularly novel formulations aimed at optimizing nutritional value while maintaining safety standards without compromising sustainability. Overall, the quality of most canned seafood meets industry requirements, for example, with improvements in processing strategies and strict safety protocols, leading to reduced histamine levels. However, data on marine biotoxins and microplastics in canned seafood remain limited, calling for more research and monitoring. Environmental contaminants, along with those generated during processing, are generally found to be within acceptable limits. Product recalls related to these contaminants in Europe are scarce, but continuous monitoring and regulatory enforcement remain essential. While new formulations of canned fish show promise, they require thorough evaluation to ensure both nutritional value and safety.
Collapse
Affiliation(s)
- Antónia Juliana Pais-Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
| | - António Marques
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA, I.P.), 1495-165 Algés, Portugal
| | - Helena Oliveira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA, I.P.), 1495-165 Algés, Portugal
| | - Amparo Gonçalves
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA, I.P.), 1495-165 Algés, Portugal
| | - Carolina Camacho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
| | - Helga Coelho Augusto
- Cofisa, S.A., Terrapleno do Porto de Pesca—Gala, 3090-735 Figueira da Foz, Portugal;
| | - Maria Leonor Nunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
| |
Collapse
|
2
|
Gregory G, Lermen FH, Echeveste MES. Toward food safety-driven process design: a systematic review and research agenda. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39257291 DOI: 10.1080/10408398.2024.2400590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Process design strategies are important to prevent or reduce food safety risks in production systems. In this sense, the Codex Alimentarius presents a set of principles for good hygiene practices to guide food producers. However, studies in food safety often focus on analyzing and controlling implemented production processes without a policy of designing them with a preventive logic, leading to resource misallocation and noncompliance. This study aims to gather and analyze techniques, drivers, challenges, and research opportunities for food safety-driven process design. A systematic literature review was carried out following three steps: (i) Data collection, including 52 studies; (ii) Bibliometric analysis; and (iii) Content analysis, identifying techniques, drivers, challenges, and research opportunities. Three main themes in the subject were identified: process assessment models, risk assessment, and whole-chain traceability. Eleven design techniques were identified and compared according to their typology, structure, and coverage of themes addressed by the Codex Alimentarius. There is a gap in techniques addressing employee competence and personal hygiene. We suggest developing a tool encompassing the Codex Alimentarius good hygiene practices themes in process design to guide food safety-driven process development.
Collapse
Affiliation(s)
- Gustavo Gregory
- Graduate Program of Industrial Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Henrique Lermen
- Department of Industrial Engineering, State University of Paraná, Paranaguá, Brazil
- Industrial Engineering Department, Universidad Tecnológica del Perú, Lima, Peru
| | | |
Collapse
|
3
|
Zhang Y, Zhang Y. A comprehensive review of furan in foods: From dietary exposures and in vivo metabolism to mitigation measures. Compr Rev Food Sci Food Saf 2023; 22:809-841. [PMID: 36541202 DOI: 10.1111/1541-4337.13092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Furan is a thermal food processing contaminant that is ubiquitous in various food products such as coffee, canned and jarred foods, and cereals. A comprehensive summary of research progress on furan is presented in this review, including discussion of (i) formation pathways, (ii) occurrence and dietary exposures, (iii) analytical techniques, (iv) toxicities, (v) metabolism and metabolites, (vi) risk assessment, (vii) potential biomarkers, and (viii) mitigation measures. Dietary exposure to furan varies among different countries and age groups. Furan acts through various toxicological pathways mediated by its primary metabolite, cis-2-butene-1,4-dial (BDA). BDA can readily react with glutathione, amino acids, biogenic amines, or nucleotides to form corresponding metabolites, some of which have been proposed as potential biomarkers of exposure to furan. Present risk assessment of furan mainly employed the margin of exposure approach. Given the widespread occurrence of furan in foods and its harmful health effects, mitigating furan levels in foods or exploring potential dietary supplements to protect against furan toxicity is necessary for the benefit of food safety and public health.
Collapse
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Owumi SE, Adedara IA, Otunla MT, Owoeye O. Influence of furan and lead co-exposure at environmentally relevant concentrations on neurobehavioral performance, redox-regulatory system and apoptotic responses in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104011. [PMID: 36396074 DOI: 10.1016/j.etap.2022.104011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/10/2023]
Abstract
Furan and lead are contaminants of global concern due to the potential public health threat associated with their exposure. Herein, the neurobehavioral performance, biochemical effects and histological alterations associated with co-exposure to furan (8 mg/kg) and lead acetate at low, environmentally realistic concentrations (1, 10 and 100 µg PbAc/L) for 28 uninterrupted days were investigated in rats. The results demonstrated that locomotor, motor and exploratory deficits associated with separate exposure to furan and lead was exacerbated in the co-exposed rats. Furan and lead co-exposure aggravated the marked decrease in acetylcholinesterase activity and antioxidant status, elevation in oxido-inflammatory stress indices and caspases activation in the cerebrum and cerebellum of exposed rats compared with control. Furan and lead co-exposure worsened neuronal degeneration as verified by histomorphometry and histochemical staining. Collectively, furan and lead acts together to exacerbate neurotoxicity via inhibition of cholinergic system, induction of oxido-inflammatory stress and caspases activation in rats.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
Yang X, Li Y, Wang P, Luan D, Sun J, Huang M, Wang B, Zheng Y. Quality changes of duck meat during thermal sterilization processing caused by microwave, stepwise retort, and general retort heating. Front Nutr 2022; 9:1016942. [PMID: 36337634 PMCID: PMC9630348 DOI: 10.3389/fnut.2022.1016942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 09/25/2023] Open
Abstract
The quality changes of duck meat during thermal sterilization using microwave, stepwise retort and general retort heating were evaluated. Results showed that compared with stepwise retort and general retort, duck meat subjected to microwave showed significantly higher gumminess, chewiness, cohesiveness and resilience as well as glutamic acid, lysine and total amino acids. Low-field NMR revealed that the relative content of immobilized water after microwave and stepwise retort treatment was significantly higher than that after general retort treatment. The relative content of 1-octen-3-ol with characteristic mushroom aroma was significantly higher with microwave and stepwise retort heating than with general retort heating, while 2-pentyl-furan with poor taste was only detected with general retort heating. The muscle bundles subjected to microwave were neatly arranged, similar to those with no thermal sterilization. Overall, the meat quality after three thermal sterilization treatment was microwave > stepwise retort > general retort.
Collapse
Affiliation(s)
- Xiaoqi Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Peng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Donglei Luan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Ming Huang
- National R&D Branch Center for Poultry Meat Processing Technology, Nanjing Huangjiaoshou Food Science and Technology Co., Ltd., Nanjing, China
| | - Baowei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yuandong Zheng
- Henan Province Qi County Yongda Food Co., Ltd., Hebi, China
| |
Collapse
|
6
|
Mathematical modeling to estimate furan formation in thermally processed foods: A preliminary analysis considering carrots as a model food. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|