Yang H, Yang S, Xia X, Deng R, Gao H, Dong Y. Sensitive Detection of a Single-Nucleotide Polymorphism in Foodborne Pathogens Using CRISPR/Cas12a-Signaling ARMS-PCR.
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022;
70:8451-8457. [PMID:
35767832 DOI:
10.1021/acs.jafc.2c03304]
[Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Salmonella infection, particularly that caused by drug-resistant strain, has become a worldwide public health issue. Herein, we presented a CRISPR/Cas12a-signaling ARMS-PCR assay, termed cARMS, capable of sensitively detecting drug-resistant Salmonella enterica (S. enterica) involving single-nucleotide polymorphism (SNP). Owing to the dual-recognition processes, i.e., allele-specific primed polymerization and CRISPR/Cas12 binding, the cARMS assay yielded a high sensitivity for detecting SNP down to ∼0.5%. We used the cARMS assay to investigate the adaptation of SNP-involved drug-resistant S. enterica to salt stress. It was found that the mutants exhibited stronger adaptation to salt stress, indicating the potential risk of using high salt content as a sterilization strategy. The results verified the feasibility of the cARMS assay in controlling SNP-involved bacteria-associated biosafety.
Collapse