1
|
Kaniyamparambil SH, Salim MH, Al Marzooqi F, Mettu S, Otoni CG, Banat F, Tardy BL. A comprehensive study on the potential of edible coatings with polysaccharides, polyphenol, and lipids for mushroom preservation. Int J Biol Macromol 2025; 306:141494. [PMID: 40020851 DOI: 10.1016/j.ijbiomac.2025.141494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Edible coatings have been widely explored as packaging substitutes. Application of edible coatings on mushrooms remains under-explored, due to its highly porous nature, with limited benefits to date. Herein, we thoroughly benchmark six polysaccharides, one polyphenol (lignin derivative), and three lipids as edible coatings for mushrooms, namely Agaricus bisporus. The study cross-correlates the dynamics of browning and weight retention, uniquely evaluated in three storage conditions. It was shown that polysaccharide and polyphenol coatings provided notable anti-browning (46 % and 44 % reduction by alginate and pectin respectively) and limited improvements in water retention (e.g., 10 % reduction by alginate and pectin), whereas lipids were found to outstandingly reduce both the mushroom's browning (80 % and 74 % reduction by coconut oil and wax respectively) and maintains weight (169 % and 149 % improvement by wax and coconut oil respectively) in ambient conditions after two days of storage. Scanning electron microscopy was used to explore the film forming potential of the coatings, revealing inadequate surface coverage by polysaccharides and polyphenol. Beyond the benchmarking provided herein, we expect that the analytical and experimental framework provided herein can help fast-track developments of highly efficient edible coating formulations.
Collapse
Affiliation(s)
- Sarath Haridas Kaniyamparambil
- Department of Chemical & Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Mohamed Hamid Salim
- Department of Chemical & Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates.
| | - Faisal Al Marzooqi
- Department of Chemical & Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Srinivas Mettu
- Department of Chemical & Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Caio Gomide Otoni
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil; Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Fawzi Banat
- Department of Chemical & Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Blaise L Tardy
- Department of Chemical & Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Kebriti I, Solgi M, Velashjerdi M. Improving quality of strawberry by novel essential oil nanoemulsions of Echinophora platyloba combined with Aloe vera gel and gum arabic. Sci Rep 2025; 15:1731. [PMID: 39799206 PMCID: PMC11724859 DOI: 10.1038/s41598-025-86259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Strawberry fruits are highly perishable and have a limited shelf life. Therefore, effective methods such as essential oils (EOs) and edible coatings are required to mitigate spoilage and maintain fruit quality during storage. In the current study, Echinophora platyloba EO was extracted and subsequently formulated into a nanoemulsion. The strawberries were then coated using an immersion method with the prepared nanoemulsions, gum Arabic (GA), and Aloe vera gel (AV). The coating treatments included: distilled water control, 5% GA, 20% AV, 0.5% E. platyloba essential oil, 5% GA + 0.5% E. platyloba nanoemulsion essential oil, and 20% AV + 0.5% E. platyloba nanoemulsion EO. The quality of strawberries was assessed over a storage period of 3, 6, 9, 12, and 15 days. The results revealed that the EO nanoemulsion in combination with GA and AV gel coatings provided superior preservation compared to the control and single-component treatments (pure EO, GA, or AV gel). Coatings with 5% GA + 0.5% EO nanoemulsion and 20% AV + 0.5% EO nanoemulsion demonstrated the highest firmness while achieving the lowest weight loss, titratable acidity (TA), total soluble solids (TSS), TSS/TA ratio, decay percentage, and tissue browning at the end of the storage period. Notably, the decay index in the 20% AV + 0.5% EO nanoemulsion treatment was 17% lower than the 5% GA + 0.5% EO nanoemulsion treatment and 75% lower than other treatments after the experiment. These coatings are recommended due to their eco-friendly, biodegradable nature and cost-effectiveness, making them a promising solution for enhancing the shelf life and quality of strawberries.
Collapse
Affiliation(s)
- Iman Kebriti
- Department on Biology, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran
| | - Mousa Solgi
- Department of Horticultural Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran.
| | - Mohammad Velashjerdi
- Department of Materials Science and Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| |
Collapse
|
3
|
Queiroz LPDO, Aroucha EMM, da Silva WAO, de Almeida JGL, Soares LP, de Lima Leite RH. A novel edible biocomposite coating based on alginate from the brown seaweed Dictyota mertensii loaded with beeswax nanoparticles extends the shelf life of yellow passion fruit. Int J Biol Macromol 2025; 284:138051. [PMID: 39608536 DOI: 10.1016/j.ijbiomac.2024.138051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
In this study, an edible biocomposite coating of alginate extracted from the brown seaweed Dictyota mertensii was loaded with beeswax nanoparticles (BDMAB) to extend the shelf life of yellow passion fruit (Passiflora edulis f. flavicarpa). The films were characterized by morphology, moisture content, contact angle, water vapor permeability, solubility, and optical and mechanical properties. Using a 4 × 6 factorial design, coated fruit was evaluated during six storage intervals (0, 2, 4, 6, 8, 10 days) at 22.5 ± 0.5 °C and 65 ± 5 % RH, focusing on respiration rate, weight loss, peel thickness and color, pulp yield and color, soluble solids, titratable acidity, ascorbic acid, phenolics, antioxidant capacity, and sensory acceptance. The BDMAB coating, composed of 67.9 % (w/w) ADM (bleached), 5 % (w/w) glycerol, 8.5 % (w/w) beeswax, and 18.6 % (w/w) Tween 80, significantly (p < 0.05) reduced the respiration rate, minimized weight loss, and preserved quality attributes, such as acidity, ascorbic acid, phenols, and antioxidant capacity. A 3-day extension in shelf life was inferred based on the climacteric peak delay of BDMAB-coated fruits compared with the control. Sensory analysis confirmed the acceptance of BDMAB coating. Therefore, BDMAB biocomposite coatings have great potential for preserving yellow passion fruit and promoting sustainability and conservation.
Collapse
Affiliation(s)
- Luiz Paulo de Oliveira Queiroz
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Limoeiro do Norte Campus, Limoeiro do Norte ZIP Code: 62930-000, Ceará, Brazil; Graduate Program in Development and Environment, Universidade Federal Rural do Semi-Árido, Mossoró Campus, Mossoró ZIP Code: 59625-900, Rio Grande do Norte, Brazil.
| | - Edna Maria Mendes Aroucha
- Department of Engineering and Environmental Sciences, Universidade Federal Rural do Semi-Árido, Mossoró Campus, Mossoró ZIP Code: 59625-900, Rio Grande do Norte, Brazil
| | - Wedson Aleff Oliveira da Silva
- Graduate Program in Phytotechnics, Universidade Federal Rural do Semi-Árido, Mossoró Campus, Mossoró ZIP Code: 59625-900, Rio Grande do Norte, Brazil
| | - José Gustavo Lima de Almeida
- Department of Natural Sciences, Mathematics and Statistics, Universidade Federal Rural do Semi-Árido, Mossoró Campus, Mossoró ZIP Code: 59625-900, Rio Grande do Norte, Brazil
| | - Lucas Perdigão Soares
- Department of Engineering and Technology, Universidade Federal Rural do Semi-Árido, Mossoró Campus, Mossoró ZIP Code: 59625-900, Rio Grande do Norte, Brazil
| | - Ricardo Henrique de Lima Leite
- Department of Engineering and Technology, Universidade Federal Rural do Semi-Árido, Mossoró Campus, Mossoró ZIP Code: 59625-900, Rio Grande do Norte, Brazil
| |
Collapse
|
4
|
Aayush K, Sharma K, Singh GP, Chiu I, Chavan P, Shandilya M, Roy S, Ye H, Sharma S, Yang T. Development and characterization of edible and active coating based on xanthan gum nanoemulsion incorporating betel leaf extract for fresh produce preservation. Int J Biol Macromol 2024; 270:132220. [PMID: 38754654 DOI: 10.1016/j.ijbiomac.2024.132220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Developing an edible and active coating, incorporating environmentally-friendly antimicrobial agents into edible polymers, provides an eco-friendly alternative to conventional packaging and exhibits significant potential in preserving the quality of postharvest food. Herein, we aim to develop a novel edible and active coating based on xanthan gum (XG) nanoemulsion (NE) incorporating betel leaf extract (BLE) for the preservation of fresh produce. The total phenolic content, total flavonoid content, and antioxidant capacity of the methanol extract of BLE at various concentrations were characterized. Further development of the active coating at different formulations of Tween 80 (1 % and 3 % w/v), XG (0.1 % to 0.5 % w/v), and BLE (1 % to 5 % w/v) was characterized by physical stability, viscosity, and antimicrobial properties. Results showed that the active coating at 1 % BLE showed significant antimicrobial properties against diverse bacterial and fungal foodborne pathogens (e.g., B. cereus, S. aureus) and fungal cultures (e.g., C. albicans). The study also examined the shelf-life of tomatoes coated with the BLE-XG NE solution, stored at 4 °C for 27 days. Analyses of weight retention, soluble solids, pH, texture, sensory attributes, and microbial populations showed that the coating effectively preserved tomato quality, highlighting its potential to preserve fresh produce and enhance food security.
Collapse
Affiliation(s)
- Krishna Aayush
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Kanika Sharma
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Gurvendra Pal Singh
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Ivy Chiu
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Prafull Chavan
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Mamta Shandilya
- School of Physics and Material Science, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India; Department of Food Technology and Nutrition, School of Agricultural, Lovely Professional University, Phagwara 144411, India
| | - Haoxin Ye
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Somesh Sharma
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India.
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
5
|
Felicia WXL, Kobun R, Nur Aqilah NM, Mantihal S, Huda N. Chitosan/aloe vera gel coatings infused with orange peel essential oils for fruits preservation. Curr Res Food Sci 2024; 8:100680. [PMID: 38328465 PMCID: PMC10847790 DOI: 10.1016/j.crfs.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Continuous fruit waste poses significant environmental and economic challenges, necessitating innovative fruit coating technologies. This research focuses on harnessing discarded orange peels to extract essential oil (OPEO), which is then integrated into a chitosan/aloe vera (CTS/AVG) matrix. The study comprehensively characterised the coating in terms of its physicochemical properties, antioxidant capacity, and antimicrobial efficacy. The investigation involved an analysis of particle size and distribution in the coating solutions, highlighting changes induced by the incorporation of orange peel essential oil (1 %, 2 % and 3 % v/w) into the chitosan/aloe vera (4:1 v/v) matrix, including particle size reduction and enhanced Brownian motion. The study quantifies a 33.21 % decrease in water vapour transmission rate and a reduction in diffusion coefficient from 9.26 × 10-11 m2/s to 6.20 × 10-11 m2/s following the addition of OPEO to CTS/AVG. Assessment of antioxidant potential employing DPPH radical scavenging assays, revealed that CTS/AVG/3 %OPEO exhibited notably superior radical scavenging activity compared to CTS/AVG, CTS/AVG/1 %OPEO, and CTS/AVG/2 %OPEO, demonstrated by its IC50 value of 17.01 ± 0.45 mg/mL. The study employs the well diffusion method, demonstrating a higher susceptibility of gram-negative bacteria to the coating solutions than gram-positive counterparts. Remarkably, CTS/AVG/3 %OPEO displayed the most pronounced inhibition against Escherichia coli, generating an inhibitory zone diameter of 14 ± 0.8 mm. The results collectively emphasised the potential of CTS/AVG/3 %OPEO as a viable natural alternative to synthetic preservatives within the fruit industry, attributed to its exceptional antioxidant and antimicrobial properties.
Collapse
Affiliation(s)
- Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Rovina Kobun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nasir Md Nur Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Sylvester Mantihal
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nurul Huda
- Faculty of Sustainable Agriculture, Jalan Sg. Batang, Mile 10, UMS Sandakan Campus, 90000, Sandakan, Sabah, Malaysia
| |
Collapse
|
6
|
Kaur J, Jawandha SK, Gill PS, Jan Z, Grewal SK. Composite coatings of beeswax + naphthalene acetic acid preserved fruit quality and antioxidants in stored lemon fruits. Food Sci Biotechnol 2024; 33:589-598. [PMID: 38274194 PMCID: PMC10805691 DOI: 10.1007/s10068-023-01364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 01/27/2024] Open
Abstract
Lemon fruits are well recognized for their richness in antioxidants. The present study was conducted to maintain the antioxidant properties of lemon fruits under long term cold storage. Fruits were given different treatments of naphthalene acetic acid (NAA) @ 50, 100 and 150 ppm plus beeswax (BW) @ 2% and were stored at 6-8 °C and 90-95% RH for 60 days. At the end of storage, fruits coated with NAA (50 ppm) + BW (2%) retained 42.14 and 34.61% antioxidants, 62.72 and 56.54% phenolic content and 17.72 and 13.80% hydroxyl radical scavenging capacity in peel and pulp, respectively as compared to the control. This treatment also resulted in lesser weight loss (5.27%), higher ascorbic acid content (46.31 mg 100 ml-1 juice) and titratable acidity (5.23%). Hence, NAA + BW coatings were promising for the maintenance of the postharvest antioxidant quality of stored lemons. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01364-4.
Collapse
Affiliation(s)
- Jaismeen Kaur
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Sukhjit Kaur Jawandha
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Parmpal Singh Gill
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Zahwa Jan
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Satvir Kaur Grewal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| |
Collapse
|
7
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Shafiei-Hematabad Z, Kennedy JF. Advancements in coating technologies: Unveiling the potential of chitosan for the preservation of fruits and vegetables. Int J Biol Macromol 2024; 254:127677. [PMID: 38287565 DOI: 10.1016/j.ijbiomac.2023.127677] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
Post-harvest losses of fruits and vegetables pose a significant challenge to the agriculture industry worldwide. To address this issue, researchers have turned to natural and eco-friendly solutions such as chitosan coatings. Chitosan, a biopolymer derived from chitin, has gained considerable attention due to its unique properties such as non-toxicity, biodegradability, biocompatibility and potential applications in post-harvest preservation. This review article provides an in-depth analysis of the current state of research on chitosan coatings for the preservation of fruits and vegetables. Moreover, it highlights the advantages of using chitosan coatings, including its antimicrobial, antifungal, and antioxidant properties, as well as its ability to enhance shelf-life and maintain the quality attributes of fresh product. Furthermore, the review discusses the mechanisms by which chitosan interacts with fruits and vegetables, elucidating its antimicrobial activity, modified gas permeability, enhanced physical barrier and induction of host defense responses. It also examines the factors influencing the effectiveness of chitosan coatings, such as concentration, molecular weight, deacetylation degree, pH, temperature, and application methods.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Zahra Shafiei-Hematabad
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WRI5 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
8
|
Choi I, Lee BY, Kim S, Imm S, Chang Y, Han J. Comparison of chitosan and gelatin-based films and application to antimicrobial coatings enriched with grapefruit seed extract for cherry tomato preservation. Food Sci Biotechnol 2023; 32:1067-1077. [PMID: 37215250 PMCID: PMC10195967 DOI: 10.1007/s10068-023-01254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/29/2023] Open
Abstract
Bio-based single, composite, and bilayer edible films were developed based on chitosan and gelatin, including grapefruit seed extract (GSE) as an antimicrobial agent. The physicochemical and antimicrobial properties of films were analyzed, and it was found that compounding and laminating two polymers could enhance their physicochemical properties. The composite film was strong, endurable, and flexible compared with the single ones. In addition, the composite and bilayer films had lower water vapor permeability than the single ones. Edible films and coatings with GSE presented a greater bactericidal effect than the inactive ones. In addition, the hardness, weight, and color changes of the coated cherry tomatoes during 7-day storage did not differ, whereas a bacterial reduction against Salmonella Typhimurium was revealed. Taken together, composite and bilayer films with CH and GL and enriched with GSE were developed for food packaging applications, and it showed improved mechanical, water barrier, and antimicrobial properties. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01254-9.
Collapse
Affiliation(s)
- Inyoung Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Bo Young Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Sangbin Kim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, 02707 Republic of Korea
| | - Seulgi Imm
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, 02707 Republic of Korea
| | - Yoonjee Chang
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, 02707 Republic of Korea
| | - Jaejoon Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
- Department of Food Biosciences and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
9
|
Hosseini SF, Mousavi Z, McClements DJ. Beeswax: A review on the recent progress in the development of superhydrophobic films/coatings and their applications in fruits preservation. Food Chem 2023; 424:136404. [PMID: 37257280 DOI: 10.1016/j.foodchem.2023.136404] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
Recently, the design and fabrication of bio-inspired superhydrophobic materials using natural lipid additives such as beeswax (BW) have aroused great attention in food packaging as they can minimize the transfer rate of water molecules and have effective moisture barriers. This review discusses the recent progress in the design and fabrication of BW-containing edible films/coatings (e.g., emulsion and blend films, bilayer materials, bionanocomposites, and antimicrobial materials) and their potential applications on the postharvest life and quality attributes of various fruits. Incorporation of BW into polysaccharides- and proteins-based emulsion films effectively improved their hydrophobicity, water vapor, and UV/visible light barrier properties, as well as the film tensile properties. The addition of nanoparticles to BW-based polymeric matrices often results in improved physico-mechanical properties. BW coatings have been also applied to prolong the shelf-life of various climacteric fruits, however, optimization of the wax concentration can be further investigated to develop targeted food storage systems.
Collapse
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran.
| | - Zahra Mousavi
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
10
|
Chinchkar AV, Singh A, Singh R, Kamble MG, Dar AH, Sagar NA. Effect of polyvinyl acetate (PVAc) based coating on quality characteristics of capsicum during storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1077-1087. [PMID: 36908349 PMCID: PMC9998764 DOI: 10.1007/s13197-022-05457-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
The effect of PVAc (Polyvinyl acetate) coating on various characteristics of capsicum was determined during postharvest storage at room temperature (30 ± 1 °C) and refrigeration temperature (10 ± 1 °C). Food grade PVAc was used to make different coating formulations (2.5, 5, 7.5, 10 and 12.5%) by dissolving alcohol-water mixtures. After coating, the samples were stored at room temperature (30 ± 1 °C) and refrigeration temperature (10 ± 1 °C) for a comparative study. Various physicochemical parameters viz. weight loss, TSS, acidity, chlorophyll, pH, ascorbic acid, and color were analyzed every three days of storage till spoilage. Results revealed that the physicochemical characteristics and the quality of the bell peppers were improved by coating treatments at both the storage conditions. PVAc concentrations of 10 and 12.5% performed better than other PVAc coatings in retaining the chlorophyll and water content, which ultimately increased the shelf life of capsicum without significantly affecting its green color. The coating reduced the weight loss and color change, maintained total soluble solids, titratable acidity, pH over the storage period. About 40-50% less weight loss was observed in case of higher PVAc coating concentrations (10 and 12%). Therefore, the present study results suggested that PVAc coating can maintain postharvest storage quality of capsicum at 30 ± 1 °C and 10 ± 1 °C storage conditions. Graphical abstract
Collapse
Affiliation(s)
- Ajay V. Chinchkar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Anurag Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Rakhi Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Meenatai G. Kamble
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Kashmir 12122 India
| | - Narashans Alok Sagar
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| |
Collapse
|
11
|
Maghoumi M, Amodio ML, Fatchurrahman D, Cisneros-Zevallos L, Colelli G. Pomegranate Husk Scald Browning during Storage: A Review on Factors Involved, Their Modes of Action, and Its Association to Postharvest Treatments. Foods 2022; 11:3365. [PMID: 36359978 PMCID: PMC9657661 DOI: 10.3390/foods11213365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 08/05/2023] Open
Abstract
The pomegranate (Punica granatum L.), which contains high levels of health-promoting compounds, has received much attention in recent decades. Fruit storage potential ranges from 3 to 4 months in air and from 4 to 6 months in Controlled Atmospheres (CA) with 3-5% oxygen and 10-15% carbon dioxide. Storage life is limited by decay, chilling injury, weight loss (WL), and husk scald. In particular, husk scald (HS) limits pomegranate long-term storage at favorable temperatures. HS appears as skin browning which expands from stem end towards the blossom end during handling or long-term storage (10-12 weeks) at 6-10 °C. Even though HS symptoms are limited to external appearance, it may still significantly reduce pomegranate fruit marketability. A number of postharvest treatments have been proposed to prevent husk scald, including atmospheric modifications, intermittent warming, coatings, and exposure to 1-MCP. Long-term storage may induce phenolic compounds accumulation, affect organelles membranes, and activate browning enzymes such as polyphenol oxidases (PPO) and peroxidases (POD). Due to oxidation of tannins and phenolics, scalding becomes visible. There is no complete understanding of the etiology and biochemistry of HS. This review discusses the hypothesized mechanism of HS based on recent research, its association to postharvest treatments, and their possible targets.
Collapse
Affiliation(s)
- Mahshad Maghoumi
- Dipartimento di Scienze Agrarie, Degli Alimenti e Dell’ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Maria Luisa Amodio
- Dipartimento di Scienze Agrarie, Degli Alimenti e Dell’ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Danial Fatchurrahman
- Dipartimento di Scienze Agrarie, Degli Alimenti e Dell’ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Giancarlo Colelli
- Dipartimento di Scienze Agrarie, Degli Alimenti e Dell’ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
12
|
Agyemang B, Grabulos J, Hubert O, Bourlieu C, Nigen M, Lebrun M, Coffigniez F, Guillard V, Brat P. Properties of beeswax antifungal coatings obtained by high‐pressure homogenisation and their application for preserving bananas during storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bridget Agyemang
- CIRAD ‐ UMR‐ Qualisud, Dpt Persyst Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD Université de La Réunion Montpellier France
| | - Joel Grabulos
- CIRAD ‐ UMR‐ Qualisud, Dpt Persyst Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD Université de La Réunion Montpellier France
| | - Olivier Hubert
- CIRAD ‐ UMR‐ Qualisud, Dpt Persyst Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD Université de La Réunion Montpellier France
| | - Claire Bourlieu
- Département Génie Biologique Alimentaire ‐ Équipe I2M Polytech Montpellier, UMR IATE Montpellier France
| | - Michael Nigen
- Département Génie Biologique Alimentaire ‐ Équipe I2M Polytech Montpellier, UMR IATE Montpellier France
- IATE, Univ Montpellier, INRAE, Institut Agro Montpellier France
| | - Marc Lebrun
- CIRAD ‐ UMR‐ Qualisud, Dpt Persyst Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD Université de La Réunion Montpellier France
| | - Fanny Coffigniez
- Département Génie Biologique Alimentaire ‐ Équipe I2M Polytech Montpellier, UMR IATE Montpellier France
| | - Valérie Guillard
- Département Génie Biologique Alimentaire ‐ Équipe I2M Polytech Montpellier, UMR IATE Montpellier France
| | - Pierre Brat
- CIRAD ‐ UMR‐ Qualisud, Dpt Persyst Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD Université de La Réunion Montpellier France
| |
Collapse
|
13
|
Influence of Nano-Silica/Chitosan Film Coating on the Quality of ‘Tommy Atkins’ Mango. Processes (Basel) 2022. [DOI: 10.3390/pr10020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we assessed the coating of ‘Tommy Atkins’ mangoes with films containing chitosan and nano-silicon dioxide in terms of the effects on fruit parameters as an indicator of quality. After coating, the fruits were first stored at 13 ± 1 °C and 90–95% RH for 30 days, and then at 20 ± 2 °C and 70–75% RH for 5 days, which corresponds to the marketing period. The results showed that coating treatments significantly decreased the fruits’ weight loss and decay percentage compared to the uncoated control samples over the storage period. Additionally, all coated treatments delayed skin degreening, reduced endogenous ethylene production, suppressed respiration rate, and maintained the firmness, compared to untreated control fruit. Titratable acidity and vitamin C significantly decreased in all samples during storage, but this decrease was less pronounced in the coated fruits. Furthermore, coating can delay the increments in total soluble solids and total sugars while maintaining total phenolics, and high antioxidant content of fruits, thereby extending the effective length of the marketing period of treated fruits compared to the control. It was shown that the coating combination of 2% chitosan plus 1% nano-silicon dioxide was the most successful in maintaining the mango’s quality under cold storage and during marketing.
Collapse
|
14
|
The Combined Effect of Hot Water Treatment and Chitosan Coating on Mango (Mangifera indica L. cv. Kent) Fruits to Control Postharvest Deterioration and Increase Fruit Quality. COATINGS 2022. [DOI: 10.3390/coatings12010083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The synergistic effect of dipping in 55 °C for 5 min of hot water (HW) and 1% chitosan coating during the storage of mango at 13 ± 0.5 °C and 85%–90% relative humidity for 28 days was investigated. The combined treatment significantly suppressed the fruit decay percentage compared with both the single treatment and the control. In addition, the specific activities of key plant defense-related enzymes, including peroxidase (POD) and catalase (CAT), markedly increased. The increase occurred in the pulp of the fruits treated with the combined treatment compared to those treated with HW or chitosan alone. While the control fruits showed the lowest values, the combination of pre-storage HW treatment and chitosan coating maintained higher values of flesh hue angle (h°), vitamin C content, membrane stability index (MSI) percentage, as well as lower weight loss compared with the untreated mango fruits. The combined treatment and chitosan treatment alone delayed fruit ripening by keeping fruit firmness, lessening the continuous increase of total soluble solids (TSS), and slowing the decrease in titratable acidity (TA). The results showed that the combined application of HW treatment and chitosan coating can be used as an effective strategy to suppress postharvest decay and improve the quality of mango fruits.
Collapse
|