1
|
Wang Q, Chen Z, Gao X, Xu H, Cheng YY, Liu S, Wang W, Zhang Y, Meng D, Wang Y, Liao S, Xie C, Wang Y. A simple and effective method to enhance the level of gamma-aminobutyric acid in Chinese yam tubers while preserving its original appearance. Food Chem X 2025; 27:102379. [PMID: 40206050 PMCID: PMC11979418 DOI: 10.1016/j.fochx.2025.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Hot-air drying is an effective method to enhance the levels of gamma-aminobutyric acid (GABA) in edible tubers/tuberous roots. However, consumers prefer fresh food to processed food. Therefore, this study aims to develop an effective method to increase the GABA levels in the tubers of Chinese yam (CY tubers) and the tubers/tuberous roots of other plants while preserving its original appearance. Among nitrogen treatment (treatment under a nitrogen atmosphere), carbon dioxide (CO2) treatment (treatment under a CO2 atmosphere), vacuum treatment, and water immersion, CO2 treatment was the most effective GABA-level-increasing method for CY tubers, with water immersion being more effective than nitrogen treatment and vacuum treatment. The GABA level in CY tubers treated with CO2 for 72 h reached 1.25 ± 0.08 mg/g. CO2 treatment and water immersion were also effective GABA-level-increasing methods for CY bulbils, potatoes, and lotus tubers, but they were less effective for carrots.
Collapse
Affiliation(s)
- Qiang Wang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
- Quality Inspection and Analysis Research Center, Henan Academy of Sciences, Zhengzhou 450002, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhuo Chen
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Xiqiang Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongde Xu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yung-Yi Cheng
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shuangyan Liu
- Quality Inspection and Analysis Research Center, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Wei Wang
- Quality Inspection and Analysis Research Center, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Yuwei Zhang
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People's Hospital, Zhengzhou 450002, China
| | - Dian Meng
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yinuo Wang
- Zhengzhou No. 7 High School, Zhengzhou 450045, China
| | - Shixiu Liao
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People's Hospital, Zhengzhou 450002, China
| | - Chengping Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yanli Wang
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People's Hospital, Zhengzhou 450002, China
| |
Collapse
|
2
|
Hurtado-Romero A, Zepeda-Hernández A, Cárdenas-Rangel J, Aguilar-Márquez R, Garcia-Amezquita LE, Carrillo-Nieves D, García-Cayuela T. Frozen Fermented Dairy Snacks with Probiotics and Blueberry Bagasse: Stability, Bioactivity, and Digestive Viability. Microorganisms 2025; 13:86. [PMID: 39858854 PMCID: PMC11767701 DOI: 10.3390/microorganisms13010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
The demand for healthier snack options has driven innovation in frozen dairy products. This study developed and characterized novel frozen dairy snacks fermented with probiotics (Lactobacillus acidophilus LA5; Lacticaseibacillus rhamnosus GG, and Streptococcus thermophilus BIOTEC003) and containing 2% blueberry bagasse. Four formulations (LA5, LGG, LA5-BERRY, and LGG-BERRY) were analyzed for their nutritional, physicochemical, functional, and sensory properties. High protein content (>17% d.w.) and increased dietary fiber (5.77-5.88% d.w.) were observed in bagasse-containing formulations. Stable technological characteristics were maintained, with melting rates increasing slightly during storage. Probiotic viability remained high (>8.5 log CFU/mL) after freezing and storage at -20 °C for 30 days. Post-simulated digestion, probiotics retained >7.5 log CFU/mL, while blueberry bagasse formulations exhibited significantly higher phenolic content (7.62-8.74 mg/g d.w.) and antioxidant capacity, though anthocyanin content decreased (66-68%). Sensory evaluation by 100 panelists revealed high acceptance scores (>63%), with LGG-BERRY achieving the highest score (78%). These formulations demonstrate significant potential for incorporating probiotics and functional ingredients, providing an innovative solution for probiotic delivery and the sustainable utilization of fruit by-products in the food industry.
Collapse
Affiliation(s)
- Alejandra Hurtado-Romero
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan 45138, Mexico
| | - Andrea Zepeda-Hernández
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan 45138, Mexico
| | - Javier Cárdenas-Rangel
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan 45138, Mexico
| | - Ricardo Aguilar-Márquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan 45138, Mexico
| | | | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan 45138, Mexico
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan 45138, Mexico
| |
Collapse
|
3
|
Hinojosa-Avila CR, Chedraui-Urrea JJT, Estarrón-Espinosa M, Gradilla-Hernández MS, García-Cayuela T. Chemical profiling and probiotic viability assessment in Gueuze-style beer: Fermentation dynamics, metabolite and sensory characterization, and in vitro digestion resistance. Food Chem 2025; 462:140916. [PMID: 39216372 DOI: 10.1016/j.foodchem.2024.140916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Probiotic viability, metabolite concentrations, physicochemical parameters, and volatile compounds were characterized in Gueuze beers formulated with probiotic lactic acid bacteria (LAB) and yeast. Additionally, the sensory profile of the beers and the resistance of the probiotics to digestion were determined. The use of 2 International Bitterness Units resulted in high concentrations of probiotic LAB but a decline in probiotic yeast as pH decreased. Secondary fermentation led to the consumption of maltose, citric acid, and malic acid, and the production of lactic and propionic acids. Carbonation and storage at 4 °C had minimal impact on probiotic viability. The addition of probiotic LAB resulted in a distinct aroma profile with improved sensory characteristics. Our results demonstrate that sour beers produced with probiotic LAB and a probiotic yeast, and fermented using a two-step fermentation process, exhibited optimal physicochemical parameters, discriminant volatile compound profiles, promising sensory characteristics, and high probiotic concentrations after digestion.
Collapse
Affiliation(s)
- Carlo R Hinojosa-Avila
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jorge J T Chedraui-Urrea
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Prol. Canal de Miramontes, Coapa, San Bartolo el Chico, Tlalpan, 14380 Ciudad de México, Mexico
| | - Mirna Estarrón-Espinosa
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, el Bajío del Arenal, Zapopan 45019, Jalisco, Mexico
| | | | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
4
|
Naranjo-Durán AM, Miedes D, Patiño-Osorio JM, Cilla A, Alegría A, Marín-Echeverri C, Quintero-Quiroz J, Ciro-Gómez GL. Formulation of Hydrogel Beads to Improve the Bioaccessibility of Bioactive Compounds from Goldenberry and Purple Passion Fruit and Evaluation of Their Antiproliferative Effects on Human Colorectal Carcinoma Cells. Gels 2024; 11:10. [PMID: 39851981 PMCID: PMC11764489 DOI: 10.3390/gels11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
Goldenberry and purple passion fruit contain bioactive compounds (BCs) that can prevent gastrointestinal cancers; hydrogel beads can protect and control their release in the gastrointestinal tract. This study aimed to develop an encapsulating material for fruit hydrogel beads (FHBs) to increase their bioaccessibility and to assess antiproliferative effects. A blend of goldenberry-purple passion fruit was encapsulated using ionic gelation and electrospraying. Through a mixture experimental design with sodium alginate (SA), hydroxypropylmethylcellulose (HPMC) and arabic gum (AG) as components, the following response variables were optimized: polyphenol bioaccessibility and encapsulation efficiency. Polyphenols and antioxidant activity were quantified before and after digestion. Antiproliferative effect was evaluated on Caco-2 colon cancer cells. Variations in formulation proportions had a significant effect (p < 0.05) on most responses. An SA-AG mixture in a 0.75:0.25 ratio maximized polyphenol bioaccessibility to 213.17 ± 19.57% and encapsulation efficiency to 89.46 ± 6.64%. Polyphenols and antioxidant activity were lower in FHBs than in the fruit blend (F). Both F and FHBs inhibited tumor cell proliferation by 17% and 25%, respectively. In conclusion, encapsulating BCs in hydrogel beads with SA-AG can enhance the effectiveness of polyphenols in food applications by improving their bioaccessibility and showing a more pronounced effect in inhibiting tumor cell proliferation.
Collapse
Affiliation(s)
- Ana María Naranjo-Durán
- Group of Toxicology, Food and Therapeutic Alternatives, College of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Calle 67, Medellin 053108, Colombia; (J.M.P.-O.); (C.M.-E.); (J.Q.-Q.); (G.L.C.-G.)
| | - Diego Miedes
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; (D.M.); (A.A.)
| | - Juan Manuel Patiño-Osorio
- Group of Toxicology, Food and Therapeutic Alternatives, College of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Calle 67, Medellin 053108, Colombia; (J.M.P.-O.); (C.M.-E.); (J.Q.-Q.); (G.L.C.-G.)
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; (D.M.); (A.A.)
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; (D.M.); (A.A.)
| | - Catalina Marín-Echeverri
- Group of Toxicology, Food and Therapeutic Alternatives, College of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Calle 67, Medellin 053108, Colombia; (J.M.P.-O.); (C.M.-E.); (J.Q.-Q.); (G.L.C.-G.)
| | - Julián Quintero-Quiroz
- Group of Toxicology, Food and Therapeutic Alternatives, College of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Calle 67, Medellin 053108, Colombia; (J.M.P.-O.); (C.M.-E.); (J.Q.-Q.); (G.L.C.-G.)
- College of Sciences and Biotechnology, CES University, Calle 10 # 22-04, Medellin 050018, Colombia
| | - Gelmy Luz Ciro-Gómez
- Group of Toxicology, Food and Therapeutic Alternatives, College of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Calle 67, Medellin 053108, Colombia; (J.M.P.-O.); (C.M.-E.); (J.Q.-Q.); (G.L.C.-G.)
| |
Collapse
|
5
|
Devecioglu D, Kara D, Tapan R, Karbancioglu‐Guler F, Kahveci D. Enhanced production of gamma-aminobutyric acid in fermented carrot juice by utilizing pectin hydrolysate derived from pomegranate waste. Food Sci Nutr 2024; 12:6534-6547. [PMID: 39554334 PMCID: PMC11561847 DOI: 10.1002/fsn3.4282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 11/19/2024] Open
Abstract
In this study, a functional fermented beverage enriched with gamma-aminobutyric acid (GABA) was produced. To achieve this, the prebiotic abilities of pectin obtained from pomegranate peel and its enzymatic hydrolysates were evaluated. Additionally, a functional fermented beverage enriched with GABA was produced by fermenting carrot juice with pectin hydrolysates. First, pectin was obtained at a yield of 8.91% from pomegranate peels. Pectinase-catalyzed hydrolysis of the obtained pectin was applied using different enzyme concentrations and hydrolysis times, and the effect of these hydrolysates on the growth of Levilactobacillus brevis was determined. Although the Fourier transform infrared (FT-IR) spectra of the resulting hydrolysates were similar, their degree of esterification compared to that of pectin was statistically different (p < .05). Considering the viability analysis and GABA production of L. brevis in the liquid medium supplemented with pectin or its hydrolysate, the hydrolysate obtained by treatment with 400 μL enzyme for 2 h and having a high glucose content (216.80 mg/100 g) was selected for application in fermented carrot juice. During fermentation (24, 48, and 72 h), a remarkable change was observed, especially in the amounts of lactic acid and malic acid, while the amount of GABA in carrot juice varied between 25 and 46 mg/mL and increased with the increase in hydrolysate concentration. It was observed that the total phenolic content and antioxidant activity of carrot juice were highly affected by the hydrolysate concentration. This study demonstrated that pectin hydrolysate obtained from food waste could be a potential prebiotic and could be used in the production of a functional beverage with improved GABA content.
Collapse
Affiliation(s)
- Dilara Devecioglu
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| | - Didem Kara
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| | - Rabia Tapan
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| | - Funda Karbancioglu‐Guler
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| | - Derya Kahveci
- Faculty of Chemical and Metallurgical Engineering, Department of Food EngineeringIstanbul Technical UniversityMaslakTurkey
| |
Collapse
|
6
|
Taghizadeh Ghassab F, Shamlou Mahmoudi F, Taheri Tinjani R, Emami Meibodi A, Zali MR, Yadegar A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci 2024; 350:122748. [PMID: 38843992 DOI: 10.1016/j.lfs.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh Ghassab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shamlou Mahmoudi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taheri Tinjani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Urcan AC, Criste AD, Bobiș O, Cornea-Cipcigan M, Giurgiu AI, Dezmirean DS. Evaluation of Functional Properties of Some Lactic Acid Bacteria Strains for Probiotic Applications in Apiculture. Microorganisms 2024; 12:1249. [PMID: 38930631 PMCID: PMC11205645 DOI: 10.3390/microorganisms12061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
This study evaluates the suitability of three lactic acid bacteria (LAB) strains-Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Apilactobacillus kunkeei-for use as probiotics in apiculture. Given the decline in bee populations due to pathogens and environmental stressors, sustainable alternatives to conventional treatments are necessary. This study aimed to assess the potential of these LAB strains in a probiotic formulation for bees through various in vitro tests, including co-culture interactions, biofilm formation, auto-aggregation, antioxidant activity, antimicrobial activity, antibiotic susceptibility, and resistance to high osmotic concentrations. This study aimed to assess both the individual effects of the strains and their combined effects, referred to as the LAB mix. Results indicated no mutual antagonistic activity among the LAB strains, demonstrating their compatibility with multi-strain probiotic formulations. The LAB strains showed significant survival rates under high osmotic stress and simulated gastrointestinal conditions. The LAB mix displayed enhanced biofilm formation, antioxidant activity, and antimicrobial efficacy against different bacterial strains. These findings suggest that a probiotic formulation containing these LAB strains could be used for a probiotic formulation, offering a promising approach to mitigating the negative effects of pathogens. Future research should focus on in vivo studies to validate the efficacy of these probiotic bacteria in improving bee health.
Collapse
Affiliation(s)
- Adriana Cristina Urcan
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.C.U.); (A.D.C.)
| | - Adriana Dalila Criste
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.C.U.); (A.D.C.)
| | - Otilia Bobiș
- Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.B.); (D.S.D.)
| | - Mihaiela Cornea-Cipcigan
- Department of Horticulture and Landscaping, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Alexandru-Ioan Giurgiu
- Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.B.); (D.S.D.)
| | - Daniel Severus Dezmirean
- Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.B.); (D.S.D.)
| |
Collapse
|
8
|
Moghimani M, Onyeaka H, Hashemi M, Afshari A. Evaluation of the probiotic, technological, safety attributes, and GABA-producing capacity of microorganisms isolated from Iranian milk kefir beverages. Front Microbiol 2024; 15:1385301. [PMID: 38903778 PMCID: PMC11188319 DOI: 10.3389/fmicb.2024.1385301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Kefir beverage has beneficial microorganisms that have health-giving properties; therefore, they have a good potential to be probiotic. This study evaluated the probiotic potential, technological, and safety characteristics of Enterococcus faecalis, Lactococcus lactis, and Pichia fermentans isolated from traditional kefir beverages. Method First, isolates were evaluated in terms of resistance to acid, alkali, bile salts, trypsin, and pepsin of the gastrointestinal tract. The auto-aggregation and co-aggregation ability of isolates were measured using spectrophotometry. Antimicrobial activities were assayed against important food-borne pathogens using the agar well diffusion method. Moreover, gamma-aminobutyric acid (GABA) production was investigated by thin-layer chromatography (TLC). Result Among the isolates, P. fermentans had an 85% total survival rate, but its amount reached below 6 log CFU/ml which is considered non-resistant, and it showed the highest auto-aggregation (74.67%). Moreover, only L. lactis showed antimicrobial activity and had the highest co-aggregation with E. coli PTCC 1338 (54.33%) and L. monocytogenes ATCC 7644 (78%). Finally, an evaluation of the technological and safety characteristics of the strains showed that the strains produced GABA and were safe. Discussion Although the isolates were not resistant to the gastrointestinal tract, their supernatant contained valuable natural compounds, including antioxidants, GABA, and antimicrobials, which can be used to produce functional foods and medicines. In addition, other approaches, such as increasing the initial number of strains, using foods as carriers of isolates, and encapsulating the isolates, can effectively increase the survivability of isolates in the gastrointestinal tract.
Collapse
Affiliation(s)
- Minoo Moghimani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, United Kingdom
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Afshari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Zhang T, Chang M, Zhou Y, Wang M, Yan M, Hou X, Liu R, Yuan Y, Yue T. Dynamic alterations of flavor, functional nutrients, and microbial community during fermentation of different animal milk kefirs. Food Res Int 2024; 186:114305. [PMID: 38729687 DOI: 10.1016/j.foodres.2024.114305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Kefir is a traditional dairy beverage, usually made from cow or goat milk fermented with kefir grains, and has many health benefits. To elucidate the fermentation patterns of animal milk kefirs during the fermentation process and find the optimal milk types, cow, camel, goat, and donkey milk were fermented with kefir grains for 0, 1, 3, 5, and 7 days. Volatile and non-volatile metabolites and microbial changes were dynamically monitored. The results showed that volatile flavor substances were massively elevated in four kefirs on days 1-3. Lipids and carbohydrates gradually decreased, while amino acids, small peptides, and tryptophan derivatives accumulated during fermentation in four kefirs. Besides, four kefirs had similar alterations in Lactobacillus and Acetobacter, while some distinctions existed in low-abundance bacteria. Association analysis of microorganisms and volatile and non-volatile metabolites also revealed the underlying fermentation mechanism. This study found that appropriately extending the fermentation time contributed to the accumulation of some functional nutrients. Furthermore, goat and donkey milk could be the better matrices for kefir fermentation.
Collapse
Affiliation(s)
- Ting Zhang
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China
| | - Min Chang
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China
| | - Ye Zhou
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China
| | - Meng Wang
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China
| | - Min Yan
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China
| | - Xiaohui Hou
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China
| | - Ruixin Liu
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
10
|
Braga JD, Thongngam M, Kumrungsee T. Gamma-aminobutyric acid as a potential postbiotic mediator in the gut-brain axis. NPJ Sci Food 2024; 8:16. [PMID: 38565567 PMCID: PMC10987602 DOI: 10.1038/s41538-024-00253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/01/2024] [Indexed: 04/04/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) plays a crucial role in the central nervous system as an inhibitory neurotransmitter. Imbalances of this neurotransmitter are associated with neurological diseases, such as Alzheimer's and Parkinson's disease, and psychological disorders, including anxiety, depression, and stress. Since GABA has long been believed to not cross the blood-brain barrier, the effects of circulating GABA on the brain are neglected. However, emerging evidence has demonstrated that changes in both circulating and brain levels of GABA are associated with changes in gut microbiota composition and that changes in GABA levels and microbiota composition play a role in modulating mental health. This recent research has raised the possibility that GABA may be a potent mediator of the gut-brain axis. This review article will cover up-to-date information about GABA-producing microorganisms isolated from human gut and food sources, explanation why those microorganisms produce GABA, food factors inducing gut-GABA production, evidence suggesting GABA as a mediator linking between gut microbiota and mental health, including anxiety, depression, stress, epilepsy, autism spectrum disorder, and attention deficit hyperactivity disorder, and novel information regarding homocarnosine-a predominant brain peptide that is a putative downstream mediator of GABA in regulating brain functions. This review will help us to understand how the gut microbiota and GABA-homocarnosine metabolism play a significant role in brain functions. Nonetheless, it could support further research on the use of GABA production-inducing microorganisms and food factors as agents to treat neurological and psychological disorders.
Collapse
Affiliation(s)
- Jason D Braga
- Laboratory of Molecular Nutrition, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
- Institute of Food Science and Technology, College of Agriculture, Food, Environment and Natural Resources, Cavite State University, Indang, Cavite, 4122, Philippines
| | - Masubon Thongngam
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Thanutchaporn Kumrungsee
- Laboratory of Molecular Nutrition, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan.
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, 739-8527, Japan.
| |
Collapse
|
11
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
12
|
Leska A, Nowak A, Rosicka-Kaczmarek J, Ryngajłło M, Czarnecka-Chrebelska KH. Characterization and Protective Properties of Lactic Acid Bacteria Intended to Be Used in Probiotic Preparation for Honeybees (Apis mellifera L.)—An In Vitro Study. Animals (Basel) 2023; 13:ani13061059. [PMID: 36978601 PMCID: PMC10044574 DOI: 10.3390/ani13061059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Lactic acid bacteria (LAB) are widely used probiotics and offer promising prospects for increasing the viability of honeybees. Thus, the probiotic potential of 10 LAB strains was determined, which in our previous studies showed the most potent protective abilities. In the current study, we investigated various properties of probiotic candidates. The tested LAB strains varied in susceptibility to tested antibiotics. Isolates showed high viability in sugar syrups and gastrointestinal conditions. None of the LAB strains exhibited β-hemolytic activity, mutual antagonism, mucin degradation, hydrogen peroxide production capacity, or bile salt hydrolase (BSH) activity. Additionally, the cytotoxicity of LAB cell-free supernatants (CFS) was assessed, as well as the effect of CFS from P. pentosaceus 14/1 on the cytotoxicity of coumaphos and chlorpyrifos in the Caco-2 cell line. The viability of Caco-2 cells reached up to 89.81% in the presence of the highest concentration of CFS. Furthermore, LAB metabolites decreased the cytotoxicity of insecticides (up to 19.32%) thus demonstrating cytoprotective activity. All tested LAB strains produced lactic, acetic, and malonic acids. This research allowed the selection of the most effective LAB strains, in terms of probiosis, for future in vivo studies aimed at developing an ecologically protective biopreparation for honeybees.
Collapse
Affiliation(s)
- Aleksandra Leska
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (A.L.); (A.N.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (A.L.); (A.N.)
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Małgorzata Ryngajłło
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Karolina Henryka Czarnecka-Chrebelska
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, 5 Mazowiecka Str. (A-6 Building), 92-215 Lodz, Poland
| |
Collapse
|
13
|
Niu T, Jiang Y, Fan S, Yang G, Shi C, Ye L, Wang C. Antiviral effects of Pediococcus acidilactici isolated from Tibetan mushroom and comparative genomic analysis. Front Microbiol 2023; 13:1069981. [PMID: 36704546 PMCID: PMC9871908 DOI: 10.3389/fmicb.2022.1069981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
Rotavirus is one of the main pathogens that cause diarrhoea in young animals, and countless animals have died of rotavirus infection worldwide. Three strains of lactic acid bacteria isolated from Tibetan mushrooms were used to study the inhibition of rotavirus in vitro and in vivo. One part was to identify and study the biochemical and probiotic characteristics of three isolated lactic acid bacteria, and the other part was to evaluate the inhibitory effect on rotavirus via in vivo and in vitro experiments. The whole genome of the lactic acid bacteria with the best antiviral effect was sequenced, and the differences between them and the standard strains were analyzed by comparative genomic analysis, so as to provide a theoretical basis for exploring the antiviral effect of lactic acid bacteria.The three strains were identified as Pediococcus acidilactici, Lactobacillus casei and Lactobacillus paracasei. Pediococcus acidilactici showed good acid tolerance, bile salt tolerance, survival in artificial intestinal fluid, survival in gastric fluid and bacteriostasis. In in vitro experiments, pig intestinal epithelial cells cocultured with Pediococcus acidilactici exhibited reduced viral infection. In the in vivo experiment, the duodenum of mice fed Pediococcus acidilactici had extremely low numbers of virus particles. The total genome size was 2,026,809 bp, the total number of genes was 1988, and the total length of genes was 1,767,273 bp. The proportion of glycoside hydrolases and glycoside transferases in CAZy was 50.6 and 29.6%, respectively. The Metabolism function in KEEG had the highest number of Global and overview maps. Among the comparative genomes, Pediococcus acidilactici had the highest homology with GCF 000146325.1, and had a good collinearity with GCF 013127755.1, without numerous gene rearrangement events such as insertion, deletion, inversion and translocation. In conclusion, Pediococcus acidilactici was a good candidate strain for antiviral probiotics.
Collapse
|
14
|
Functional Analysis of Lactic Acid Bacteria and Bifidobacteria and Their Effects on Human Health. Foods 2022; 11:foods11152293. [PMID: 35954061 PMCID: PMC9368552 DOI: 10.3390/foods11152293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
|
15
|
Ramos IM, Rodríguez-Sánchez S, Seseña S, Palop ML, Poveda JM. Assessment of safety characteristics, postbiotic potential, and technological stress response of Leuconostoc strains from different origins for their use in the production of functional dairy foods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Functional Foods, Nutraceuticals and Probiotics: A Focus on Human Health. Microorganisms 2022; 10:microorganisms10051065. [PMID: 35630507 PMCID: PMC9143759 DOI: 10.3390/microorganisms10051065] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Functional foods are classified as traditional or staple foods that provide an essential nutritional level and share potentially positive effects on host health, including the reduction of disease by optimizing the immune system’s ability to prevent and control infections by pathogens, as well as pathologies that cause functional alterations in the host. This chapter reviews the most recent research and advances in this area and discusses some perspectives on what the future holds in this area.
Collapse
|
17
|
Gómez-García R, Vilas-Boas AA, Machado M, Campos DA, Aguilar CN, Madureira AR, Pintado M. Impact of simulated in vitro gastrointestinal digestion on bioactive compounds, bioactivity and cytotoxicity of melon (Cucumis melo L. inodorus) peel juice powder. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Tan LL, Tan CH, Ng NKJ, Tan YH, Conway PL, Loo SCJ. Potential Probiotic Strains From Milk and Water Kefir Grains in Singapore-Use for Defense Against Enteric Bacterial Pathogens. Front Microbiol 2022; 13:857720. [PMID: 35432232 PMCID: PMC9011154 DOI: 10.3389/fmicb.2022.857720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Kefir grains consist of complex symbiotic mixtures of bacteria and yeasts, and are reported to impart numerous health-boosting properties to milk and water kefir beverages. The objective of this work was to investigate the microbial communities in kefir grains, and explore the possibility of deriving useful probiotic strains from them. A total of 158 microbial strains, representing six fungal and 17 bacterial species, were isolated from milk and water kefir grains collected from a Singapore-based homebrewer. Based on 16S rRNA sequencing, isolated genera included Lactobacillus, Liquorilactobacillus, Lacticaseibacillus, Lentilactobacillus, Leuconostoc, Lactococcus, Acetobacter, Gluconobacter, Oenococcus, Clostridium, Zymomonas, Saccharomyces, Kluyveromyces, Pichia, Lachancea, Candida, and Brettanomyces. To characterize these isolates, a funnel approach, involving numerous phenotypic and genomic screening assays, was applied to identify kefir-derived microbial strains with the highest probiotic potential. Particular focus was placed on examining the pathogen inhibitory properties of kefir isolates toward enteric pathogens which pose a considerable global health burden. Enteric pathogens tested include species of Bacillus, Salmonella, Vibrio, Clostridium, Klebsiella, Escherichia, and Staphylococcus. Well diffusion assays were conducted to determine the propensity of kefir isolates to inhibit growth of enteric pathogens, and a competitive adhesion/exclusion assay was used to determine the ability of kefir isolates to out-compete or exclude attachment of enteric pathogens to Caco-2 cells. Seven bacterial strains of Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Liquorilactobacillus satsumensis, Lactobacillus helveticus, and Lentilactobacillus kefiri, were ultimately identified as potential probiotics, and combined to form a "kefir probiotics blend." Desirable probiotic characteristics, including good survival in acid and bile environments, bile salt hydrolase activity, antioxidant activity, non-cytotoxicity and high adhesion to Caco-2 cells, and a lack of virulence or antimicrobial resistance genes. In addition, vitamin and γ-aminobutyric acid (GABA) synthesis genes, were identified in these kefir isolates. Overall, probiotic candidates derived in this study are well-characterized strains with a good safety profile which can serve as novel agents to combat enteric diseases. These kefir-derived probiotics also add diversity to the existing repertoire of probiotic strains, and may provide consumers with alternative product formats to attain the health benefits of kefir.
Collapse
Affiliation(s)
- Li Ling Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chuan Hao Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Noele Kai Jing Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yoke Hun Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Patricia Lynne Conway
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
19
|
Abuqwider J, Altamimi M, Mauriello G. Limosilactobacillus reuteri in Health and Disease. Microorganisms 2022; 10:microorganisms10030522. [PMID: 35336098 PMCID: PMC8953724 DOI: 10.3390/microorganisms10030522] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Limosilactobacillus reuteri is a microorganism with valuable probiotic qualities that has been widely employed in humans to promote health. It is a well-studied probiotic bacterium that exerts beneficial health effects due to several metabolic mechanisms that enhance the production of anti-inflammatory cytochines and modulate the gut microbiota by the production of antimicrobial molecules, including reuterin. This review provides an overview of the data that support the role of probiotic properties, and the antimicrobial and immunomodulatory effects of some L. reuteri strains in relation to their metabolite production profile on the amelioration of many diseases and disorders. Although the results discussed in this paper are strain dependent, they show that L. reuteri, by different mechanisms and various metabolites, may control body weight and obesity, improve insulin sensitivity and glucose homeostasis, increase gut integrity and immunomodulation, and attenuate hepatic disorders. Gut microbiota modulation by ingesting probiotic L. reuteri strains could be a promising preventative and therapeutic approach against many diseases and disorders.
Collapse
Affiliation(s)
- Jumana Abuqwider
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine;
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
- Correspondence: ; Tel.: +39-081-2539452
| |
Collapse
|
20
|
González-Orozco BD, García-Cano I, Jiménez-Flores R, Alvárez VB. Invited review: Milk kefir microbiota—Direct and indirect antimicrobial effects. J Dairy Sci 2022; 105:3703-3715. [DOI: 10.3168/jds.2021-21382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022]
|