1
|
Magnani G, Giliberti C, Errico D, Stighezza M, Fortunati S, Mattarozzi M, Boni A, Bianchi V, Giannetto M, De Munari I, Cagnoni S, Careri M. Evaluation of a Voltametric E-Tongue Combined with Data Preprocessing for Fast and Effective Machine Learning-Based Classification of Tomato Purées by Cultivar. SENSORS (BASEL, SWITZERLAND) 2024; 24:3586. [PMID: 38894376 PMCID: PMC11175304 DOI: 10.3390/s24113586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
The potential of a voltametric E-tongue coupled with a custom data pre-processing stage to improve the performance of machine learning techniques for rapid discrimination of tomato purées between cultivars of different economic value has been investigated. To this aim, a sensor array with screen-printed carbon electrodes modified with gold nanoparticles (GNP), copper nanoparticles (CNP) and bulk gold subsequently modified with poly(3,4-ethylenedioxythiophene) (PEDOT), was developed to acquire data to be transformed by a custom pre-processing pipeline and then processed by a set of commonly used classifiers. The GNP and CNP-modified electrodes, selected based on their sensitivity to soluble monosaccharides, demonstrated good ability in discriminating samples of different cultivars. Among the different data analysis methods tested, Linear Discriminant Analysis (LDA) proved to be particularly suitable, obtaining an average F1 score of 99.26%. The pre-processing stage was beneficial in reducing the number of input features, decreasing the computational cost, i.e., the number of computing operations to be performed, of the entire method and aiding future cost-efficient hardware implementation. These findings proved that coupling the multi-sensing platform featuring properly modified sensors with the custom pre-processing method developed and LDA provided an optimal tradeoff between analytical problem solving and reliable chemical information, as well as accuracy and computational complexity. These results can be preliminary to the design of hardware solutions that could be embedded into low-cost portable devices.
Collapse
Affiliation(s)
- Giulia Magnani
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy; (G.M.); (M.S.); (A.B.); (V.B.); (I.D.M.)
| | - Chiara Giliberti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.G.); (D.E.); (S.F.); (M.M.); (M.C.)
| | - Davide Errico
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.G.); (D.E.); (S.F.); (M.M.); (M.C.)
| | - Mattia Stighezza
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy; (G.M.); (M.S.); (A.B.); (V.B.); (I.D.M.)
| | - Simone Fortunati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.G.); (D.E.); (S.F.); (M.M.); (M.C.)
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.G.); (D.E.); (S.F.); (M.M.); (M.C.)
| | - Andrea Boni
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy; (G.M.); (M.S.); (A.B.); (V.B.); (I.D.M.)
| | - Valentina Bianchi
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy; (G.M.); (M.S.); (A.B.); (V.B.); (I.D.M.)
| | - Marco Giannetto
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.G.); (D.E.); (S.F.); (M.M.); (M.C.)
| | - Ilaria De Munari
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy; (G.M.); (M.S.); (A.B.); (V.B.); (I.D.M.)
| | - Stefano Cagnoni
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy; (G.M.); (M.S.); (A.B.); (V.B.); (I.D.M.)
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.G.); (D.E.); (S.F.); (M.M.); (M.C.)
| |
Collapse
|
2
|
Douglas SL, Bernardez-Morales GM, Nichols BW, Johnson GF, Barahona-Dominguez LS, Jessup AP, Belk AD, Ball JJ, Cho S, Sawyer JT. Inclusion of Beef Heart in Ground Beef Patties Alters Quality Characteristics and Consumer Acceptability as Assessed by the Application of Electronic Nose and Tongue Technology. Foods 2024; 13:811. [PMID: 38472924 DOI: 10.3390/foods13050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Consumer purchasing of beef is often driven by the trinity of flavor, palatability, and convenience. Currently, beef patties in the United States are manufactured with fat and lean trimmings derived from skeletal muscles. A reduction in total beef supply may require the use of animal by-product utilization such as variety meats to achieve patty formulations. The current study aimed to assess textural, color, and flavor characteristics in addition to volatile compounds through electronic technology, e-nose and e-tongue, of ground beef patties formulated with beef heart. Ground beef patties were manufactured with 0%, 6%, 12%, or 18% beef heart, with the remainder of the meat block being shoulder clod-derived ground beef. Patties (n = 65/batch/treatment) within each batch (n = 3) with each treatment were randomly allocated to cooked color (n = 17/batch/treatment), Allo-Kramer shear force (AKSF; n = 17/batch/treatment), texture profile analysis (TPA; n = 6/batch/treatment), cooking loss (n = 17/batch/treatment), consumer panel (n = 3/batch/treatment), e-nose (n = 1/batch/treatment), and e-tongue (n = 1/batch/treatment) analysis groups. Patties containing beef heart did not require additional cooking time (p = 0.1325) nor exhibit greater cooking loss (p = 0.0803). Additionally, inclusion rates of beef heart increased hardness (p = 0.0030) and chewiness values (p = 0.0316) in TPA, were internally redder (p = 0.0001), and reduced overall liking by consumer panelists (p = 0.0367). Lastly, patties containing beef heart exhibited greater red-to-brown (p = 0.0003) and hue angle (p = 0.0001) values than control patties. The results suggest that beef heart inclusion does alter ground beef quality characteristics and consumer acceptability.
Collapse
Affiliation(s)
| | | | - Brooks W Nichols
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | | | | | - Ainsley P Jessup
- Department of Poultry Sciences, Auburn University, Auburn, AL 36849, USA
| | - Aeriel D Belk
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jase J Ball
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Sungeun Cho
- Department of Poultry Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jason T Sawyer
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Martinez-Velasco JD, Filomena-Ambrosio A, Garzón-Castro CL. Technological tools for the measurement of sensory characteristics in food: A review. F1000Res 2024; 12:340. [PMID: 38322308 PMCID: PMC10844804 DOI: 10.12688/f1000research.131914.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 02/08/2024] Open
Abstract
The use of technological tools, in the food industry, has allowed a quick and reliable identification and measurement of the sensory characteristics of food matrices is of great importance, since they emulate the functioning of the five senses (smell, taste, sight, touch, and hearing). Therefore, industry and academia have been conducting research focused on developing and using these instruments which is evidenced in various studies that have been reported in the scientific literature. In this review, several of these technological tools are documented, such as the e-nose, e-tongue, colorimeter, artificial vision systems, and instruments that allow texture measurement (texture analyzer, electromyography, others). These allow us to carry out processes of analysis, review, and evaluation of food to determine essential characteristics such as quality, composition, maturity, authenticity, and origin. The determination of these characteristics allows the standardization of food matrices, achieving the improvement of existing foods and encouraging the development of new products that satisfy the sensory experiences of the consumer, driving growth in the food sector. However, the tools discussed have some limitations such as acquisition cost, calibration and maintenance cost, and in some cases, they are designed to work with a specific food matrix.
Collapse
Affiliation(s)
- José D Martinez-Velasco
- Engineering Faculty - Research Group CAPSAB, Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chia, Cundinamarca, 250001, Colombia
| | - Annamaria Filomena-Ambrosio
- International School of Economics and Administrative Science - Research Group Alimentación, Gestión de Procesos y Servicio de la Universidad de La Sabana Research Group, Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, Cundinamarca, 250001, Colombia
| | - Claudia L Garzón-Castro
- Engineering Faculty - Research Group CAPSAB, Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chia, Cundinamarca, 250001, Colombia
| |
Collapse
|
4
|
Zhang Z, Li Y, Zhao S, Qie M, Bai L, Gao Z, Liang K, Zhao Y. Rapid analysis technologies with chemometrics for food authenticity field: A review. Curr Res Food Sci 2024; 8:100676. [PMID: 38303999 PMCID: PMC10830540 DOI: 10.1016/j.crfs.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024] Open
Abstract
In recent years, the problem of food adulteration has become increasingly rampant, seriously hindering the development of food production, consumption, and management. The common analytical methods used to determine food authenticity present challenges, such as complicated analysis processes and time-consuming procedures, necessitating the development of rapid, efficient analysis technology for food authentication. Spectroscopic techniques, ambient ionization mass spectrometry (AIMS), electronic sensors, and DNA-based technology have gradually been applied for food authentication due to advantages such as rapid analysis and simple operation. This paper summarizes the current research on rapid food authenticity analysis technology from three perspectives, including breeds or species determination, quality fraud detection, and geographical origin identification, and introduces chemometrics method adapted to rapid analysis techniques. It aims to promote the development of rapid analysis technology in the food authenticity field.
Collapse
Affiliation(s)
- Zixuan Zhang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengjie Qie
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Bai
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhiwei Gao
- Hangzhou Nutritome Biotech Co., Ltd., Hangzhou, China
| | - Kehong Liang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Novel Detection Techniques for Shrimp Powder Adulteration Using Near Infrared Spectroscopy in Tandem Chemometric Tools and Multiple Spectral Preprocessing. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
6
|
Munekata PES, Finardi S, de Souza CK, Meinert C, Pateiro M, Hoffmann TG, Domínguez R, Bertoli SL, Kumar M, Lorenzo JM. Applications of Electronic Nose, Electronic Eye and Electronic Tongue in Quality, Safety and Shelf Life of Meat and Meat Products: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:672. [PMID: 36679464 PMCID: PMC9860605 DOI: 10.3390/s23020672] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The quality and shelf life of meat and meat products are key factors that are usually evaluated by complex and laborious protocols and intricate sensory methods. Devices with attractive characteristics (fast reading, portability, and relatively low operational costs) that facilitate the measurement of meat and meat products characteristics are of great value. This review aims to provide an overview of the fundamentals of electronic nose (E-nose), eye (E-eye), and tongue (E-tongue), data preprocessing, chemometrics, the application in the evaluation of quality and shelf life of meat and meat products, and advantages and disadvantages related to these electronic systems. E-nose is the most versatile technology among all three electronic systems and comprises applications to distinguish the application of different preservation methods (chilling vs. frozen, for instance), processing conditions (especially temperature and time), detect adulteration (meat from different species), and the monitoring of shelf life. Emerging applications include the detection of pathogenic microorganisms using E-nose. E-tongue is another relevant technology to determine adulteration, processing conditions, and to monitor shelf life. Finally, E-eye has been providing accurate measuring of color evaluation and grade marbling levels in fresh meat. However, advances are necessary to obtain information that are more related to industrial conditions. Advances to include industrial scenarios (cut sorting in continuous processing, for instance) are of great value.
Collapse
Affiliation(s)
- Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Sarah Finardi
- Food Preservation & Innovation Laboratory, Department of Chemical Engineering, University of Blumenau, 3250 São Paulo St., Blumenau 89030-000, Brazil
| | - Carolina Krebs de Souza
- Food Preservation & Innovation Laboratory, Department of Chemical Engineering, University of Blumenau, 3250 São Paulo St., Blumenau 89030-000, Brazil
| | - Caroline Meinert
- Food Preservation & Innovation Laboratory, Department of Chemical Engineering, University of Blumenau, 3250 São Paulo St., Blumenau 89030-000, Brazil
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Tuany Gabriela Hoffmann
- Food Preservation & Innovation Laboratory, Department of Chemical Engineering, University of Blumenau, 3250 São Paulo St., Blumenau 89030-000, Brazil
- Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, 14469 Potsdam, Germany
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Sávio Leandro Bertoli
- Food Preservation & Innovation Laboratory, Department of Chemical Engineering, University of Blumenau, 3250 São Paulo St., Blumenau 89030-000, Brazil
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Facultade de Ciencias, Universidade de Vigo, Área de Tecnoloxía dos Alimentos, 32004 Ourense, Spain
| |
Collapse
|
7
|
Effect of chitosan coating incorporated with oregano essential oil on microbial inactivation and quality properties of refrigerated chicken breasts. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Metabolomics-Based Analysis of the Major Taste Contributors of Meat by Comparing Differences in Muscle Tissue between Chickens and Common Livestock Species. Foods 2022; 11:foods11223586. [PMID: 36429179 PMCID: PMC9689027 DOI: 10.3390/foods11223586] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
The taste of meat is the result of complex chemical reactions. In this study, non-target metabolomics was used to resolve the taste differences in muscle tissue of four major livestock species (chicken, duck, pork, and beef). The electronic tongue was then combined to identify the major taste contributors to meat. The results showed that the metabolism of chicken meat differed from that of duck, pork, and beef. The multivariate statistical analysis showed that the five important metabolites responsible for the differences were all related to taste, including creatinine, hypoxanthine, gamma-aminobutyric acid, L-glutamic acid, and L-aspartic acid. These five key taste contributors acted mainly through the amino acid metabolic pathways. In combination with electronic tongue (e-tongue) analysis, inosine monophosphate was the main contributor of umami. L-Glutamic acid and L-aspartic acid might be important contributors to the umami richness. Creatinine and hypoxanthine contributed more to the bitter aftertaste of meat.
Collapse
|
9
|
Du X, Zhang W, He J, Zhao M, Wang J, Dong X, Fu Y, Xie X, Miao S. The Impact of Rearing Salinity on Flesh Texture, Taste, and Fatty Acid Composition in Largemouth Bass Micropterus salmoides. Foods 2022; 11:3261. [PMID: 37431009 PMCID: PMC9601509 DOI: 10.3390/foods11203261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
It is of great significance for the aquaculture industry to determine how rearing salinity impacts fish flesh quality. In the present study, largemouth bass was cultured in different salinities (0%, 0.3%, 0.9%) for 10 weeks, and the effect on flesh texture, flavor compounds, taste, and fatty acid composition was evaluated. We show that rearing salinity not only increased flesh water-holding capacity, but also enhanced muscle hardness, chewiness, gumminess, and adhesiveness, which was consistent with the finding in the shear value test. Morphology analysis further revealed that the effect of salinity on flesh texture was probably related to changes in myofibril diameter and density. As for the taste of the flesh, water salinity improved the contents of both sweet and umami amino acids, and reduced the contents of bitter amino acid. Meanwhile, the content of IMP, the dominant flavor nucleotide in largemouth bass muscle, was significantly higher in the 0.9% group. Interestingly, electronic-tongue analysis demonstrated that the positive effect of salinity on flavor compounds enhanced the umami taste and taste richness of flesh. Moreover, rearing salinity improved the contents of C20: 5n-3 (EPA) and C22: 6n-3 (DHA) in back muscle. Therefore, rearing largemouth bass in adequate salinity may be a practical approach to improving flesh quality.
Collapse
Affiliation(s)
- Xuedi Du
- Laboratory of Aquaculture Nutrition and Feed, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Weiwei Zhang
- Laboratory of Aquaculture Nutrition and Feed, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jie He
- Laboratory of Aquaculture Nutrition and Feed, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mengjie Zhao
- Laboratory of Aquaculture Nutrition and Feed, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jianqiao Wang
- Laboratory of Aquaculture Nutrition and Feed, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojing Dong
- Laboratory of Aquaculture Nutrition and Feed, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuanyuan Fu
- Department of Marine Medicines and Biological Products, Ningbo Institute of Oceanography, Ningbo 315832, China
| | - Xudong Xie
- Zhenjiang Xinrun Agricultural Development Co., Ltd., Zhenjiang 212100, China
| | - Shuyan Miao
- Laboratory of Aquaculture Nutrition and Feed, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|