1
|
Akbal S, Uğur Geçer E, Ertürkmen P. Probiotic Viability and Bioactive Properties of Buffalo Yoghurt Produced Using High Cholesterol-Assimilating Probiotic Strains. Vet Med Sci 2025; 11:e70233. [PMID: 39912884 PMCID: PMC11800370 DOI: 10.1002/vms3.70233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND This study aimed to produce yoghurt with reduced cholesterol levels, enhanced antioxidant activity and angiotensin-converting enzyme (ACE) inhibitory activity while maintaining acceptable health properties, using buffalo milk and probiotic microorganisms. METHOD Buffalo yoghurts were produced using three different probiotic strains, including Lactobacillus acidophilus, Lactiplantibacillus plantarum and Bifidobacterium lactis. ACE-inhibitor activities (%), antioxidant activities as DPPH (%), and cholesterol activities in HPLC of these yoghurts were determined during the 28-day storage period. In addition, probiotic microorganisms, total aerobic mesophilic bacteria and yeast mould were counted during storage. RESULTS The viability of probiotic microorganisms in buffalo yoghurts remained above 5 log CFU/g at the end of the storage period. Antioxidant activity ranged from 9.30% to 27.20%. Buffalo yoghurt is produced with Lpb. plantarum, which exhibited the highest viability (9.12 log CFU/g) and antioxidant activity values of 61.48%. Gastrointestinal digestion affected the antioxidant and ACE-inhibitor properties of the yoghurt samples. The highest ACE-inhibitory effect after gastric digestion on the 28th day was observed in yoghurt-produced Lpb. plantarum and B. lactis, with 24.30% and 25.14% values, respectively. Also, the ACE-inhibitory activity of the outer (OUT) phase for all yoghurt samples was higher than that of undigested samples. According to cholesterol peaks obtained in HPLC, the highest cholesterol assimilation was detected in yoghurt produced using Lpb. plantarum. CONCLUSION The data obtained from the study may contribute to research on the potential of probiotic microorganisms with cholesterol-assimilation ability and probiotic food products produced using them to reduce cholesterol risk.
Collapse
Affiliation(s)
- Sinan Akbal
- Department of Food ProcessingAcıpayam Vocational SchoolPamukkale UniversityDenizliTürkiye
| | - Esra Uğur Geçer
- Faculty of EngineeringDepartment of Food EngineeringSüleyman Demirel UniversityIspartaTürkiye
| | - Pelin Ertürkmen
- Department of Food ProcessingBurdur Food, Agriculture and Livestock Vocational SchoolBurdur Mehmet Akif Ersoy UniversityBurdurTürkiye
| |
Collapse
|
2
|
Minj J, Vij S. Determination of synbiotic mango fruit yogurt and its bioactive peptides for biofunctional properties. Front Chem 2025; 12:1470704. [PMID: 39902264 PMCID: PMC11788369 DOI: 10.3389/fchem.2024.1470704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
Yogurt is one of the most popular fermented milk products consumed worldwide. Fortification of yogurt with different food components, including fruit pulp, is a common practice to make it more palatable and healthier. In India, mango fruit is easily available. It is rich in nutrients and bioactive components. However, in-depth studies on mango fruit yogurt are scarce. Therefore, in this study, we prepared synbiotic mango fruit yogurt using response surface methodology (RSM) with three different independent factors (sugar 4%-6%; prebiotic inulin 1%-3%, and mango pulp 5%-15%) to determine the response antioxidant activity. The optimal conditions were as follows: sugar 6%, mango fruit pulp 6.562%, and prebiotic inulin 1%. There were no significant differences between the results of the experimental and predicted values of antioxidant activity by this model. The optimized product was analyzed for physicochemical, biofunctional, and technofunctional properties, including total polyphenol content, total flavonoid content, proteolytic activity, antioxidant activity, and ACE-inhibitory activity. The bioactive peptides derived from synbiotic mango fruit yogurt were also extracted (3 kDa, 5 kDa and 10 kDa) and determined for their biofunctional attributes. The antioxidant activity was recorded as 1,047.95 ± 2.20 mmol/L, 1,208.07 ± 2.92 mmol/L, and 1,293.09 ± 1.10 mmol/L Trolox equivalent antioxidant capacity, while ACE-inhibitory activity was 45.68% ± 1.23%, 64.20% ± 1.24% and 82.72% ± 1.24% inhibition in 3 kDa, 5 kDa, and 10 kDa, respectively. The 10 kDa bioactive peptide exhibited superior results than the 3 kDa and 5 kDa peptides. The synbiotic mango fruit yogurt and its bioactive peptides showed significant biofunctional activities.
Collapse
Affiliation(s)
| | - Shilpa Vij
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
3
|
Terzioğlu ME, Bakirci İ. Comparison of Amino Acid Profile, ACE Inhibitory Activity, and Organic Acid Profile of Cow and Goat Yogurts Produced with Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12, and Classical Yogurt Culture. Probiotics Antimicrob Proteins 2024; 16:1566-1582. [PMID: 37460831 DOI: 10.1007/s12602-023-10123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 10/02/2024]
Abstract
In this study, we aimed to produce a standard, more functional, and nutritious yogurt by using 5 different combinations of cow milk and goat milk and 2 types of starter cultures (classical yogurt culture and commercial probiotic culture). It was determined that the use of different milk types and different starter cultures in yogurt production had a statistically very significant effect (P < 0.01) on all physicochemical, microbiological, and biochemical properties. In addition, the storage period was effective on all parameters examined at varying rates. In the context, the use of goat milk in the experimental yogurt samples caused an increase in the ACE inhibitory activity values and the count of S. thermophilus, while the use of cow milk caused an increase in serum separation and pH values. On the other hand, serum separation, pH values, and ACE inhibitory activity and phenylalanine and leucine levels were found to be higher in the yogurts produced by using ABT-2 probiotic culture. It was observed that an increase in the levels of asparagine, aspartic acid, proline, and serine, as well as lactic acid, orotic acid, and citric acid, is higher in the yogurts produced by using classical yogurt culture. It has been concluded that the combination of goat milk and cow milk at different proportions and the use of probiotic culture together in yogurt production can produce yogurt that is more functional and richer in terms of organic compounds and essential amino acids.
Collapse
Affiliation(s)
- Murat Emre Terzioğlu
- Atatürk University, Faculty of Agriculture, Department of Food Engineering, Erzurum, 25240, Turkey.
| | - İhsan Bakirci
- Atatürk University, Faculty of Agriculture, Department of Food Engineering, Erzurum, 25240, Turkey
| |
Collapse
|
4
|
Petrariu OA, Barbu IC, Niculescu AG, Constantin M, Grigore GA, Cristian RE, Mihaescu G, Vrancianu CO. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. Front Microbiol 2024; 14:1296447. [PMID: 38249451 PMCID: PMC10797027 DOI: 10.3389/fmicb.2023.1296447] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The imbalance of microbial composition and diversity in favor of pathogenic microorganisms combined with a loss of beneficial gut microbiota taxa results from factors such as age, diet, antimicrobial administration for different infections, other underlying medical conditions, etc. Probiotics are known for their capacity to improve health by stimulating the indigenous gut microbiota, enhancing host immunity resistance to infection, helping digestion, and carrying out various other functions. Concurrently, the metabolites produced by these microorganisms, termed postbiotics, which include compounds like bacteriocins, lactic acid, and hydrogen peroxide, contribute to inhibiting a wide range of pathogenic bacteria. This review presents an update on using probiotics in managing and treating various human diseases, including complications that may emerge during or after a COVID-19 infection.
Collapse
Affiliation(s)
- Oana-Alina Petrariu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Grigore Mihaescu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
5
|
Chen Z, Liang W, Liang J, Dou J, Guo F, Zhang D, Xu Z, Wang T. Probiotics: functional food ingredients with the potential to reduce hypertension. Front Cell Infect Microbiol 2023; 13:1220877. [PMID: 37465757 PMCID: PMC10351019 DOI: 10.3389/fcimb.2023.1220877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Hypertension is an increasingly pressing public health concern across the globe. It can be triggered by a variety of factors such as age and diet, as well as the stress of modern life. The traditional treatment of hypertension includes calcium ion blockers, angiotensin II receptor inhibitors and β-receptor blockers, but these drugs have at least some side effects. Recent studies have revealed that intestinal flora plays a vital role in maintaining and promoting human health. This is due to the type and amount of probiotics present in the flora. Probiotics can reduce hypertension symptoms through four mechanisms: regulating vascular oxidative stress, producing short-chain fatty acids, restoring endothelial cell function, and reducing inflammation. It has been reported that certain functional foods, using probiotics as their raw material, can modify the composition of intestinal flora, thus regulating hypertension symptoms. Consequently, utilizing the probiotic function of probiotics in conjunction with the properties of functional foods to treat hypertension is a novel, side-effect-free treatment method. This study seeks to summarize the various factors that contribute to hypertension, the mechanism of probiotics in mitigating hypertension, and the fermented functional foods with probiotic strains, in order to provide a basis for the development of functional foods which utilize probiotics as their raw material and may have the potential to reduce hypertension.
Collapse
Affiliation(s)
- Zouquan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Wanjie Liang
- Research and Development Department(R&D), Shandong Ande Healthcare Apparatus Co., Ltd., Zibo, China
| | - Jie Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Jiaxin Dou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Daolei Zhang
- School of Bioengineering, Shandong Polytechnic, Jinan, China
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| |
Collapse
|
6
|
Yang SY, Yoon KS. Effect of Probiotic Lactic Acid Bacteria (LAB) on the Quality and Safety of Greek Yogurt. Foods 2022; 11:foods11233799. [PMID: 36496607 PMCID: PMC9740215 DOI: 10.3390/foods11233799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Greek yogurt is a strained yogurt with a high protein content that brings nutritional benefits. To enhance the functional benefits of Greek yogurt, Greek yogurt was prepared with various combinations of probiotic lactic acid bacteria (LAB) (Streptococcus thermophilus, Lactobacillus bulgaricus, Lactobacillus gasseri BNR17, and Lactobacillus plantarum HY7714). Effects of probiotic LAB on quality, sensory, and microbiological characteristics of Greek yogurt were then compared. Among samples, Greek yogurt fermented by S. thermophilus and L. bulgaricus showed the highest changes of pH and titratable acidity during 21 d of storage at 4 °C. Greek yogurt fermented with L. plantarum HY7714 had a higher viscosity than other samples. Greek yogurt fermented with S. thermophilus, L. bulgaricus, L. gasseri BNR17, and L. plantarum HY7714 showed superior physicochemical properties and received the highest preference score from sensory evaluation among samples. Overall, the population of enterohaemorrhagic Escherichia coli (EHEC) was more effectively reduced in Greek yogurt fermented with probiotic LAB than in commercial Greek yogurt during storage at 4, 10, and 25 °C. Thus, the addition of L. gasseri BNR17 and L. plantarum HY7714 as starter cultures could enhance the microbial safety of Greek yogurt and sensory acceptance by consumers.
Collapse
Affiliation(s)
- So-Young Yang
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ki-Sun Yoon
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
The Mechanisms of the Potential Probiotic Lactiplantibacillus plantarum against Cardiovascular Disease and the Recent Developments in its Fermented Foods. Foods 2022; 11:foods11172549. [PMID: 36076735 PMCID: PMC9455256 DOI: 10.3390/foods11172549] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease (CVD) has become the leading cause of death worldwide. Many recent studies have pointed out that Lactiplantibacillus plantarum (Lb. plantarum) has great potential in reducing the risk of CVD. Lb. plantarum is a kind of lactic acid bacteria (LAB) widely distributed in fermented food and the human intestinal tract, some strains of which have important effects on human health and the potential to be developed into probiotics. In this review, we summarize the mechanism of potential probiotic strains of Lb. plantarum against CVD. It could regulate the body’s metabolism at the molecular, cellular, and population levels, thereby lowering blood glucose and blood lipids, regulating blood pressure, and ultimately reducing the incidence of CVD. Furthermore, since Lb. plantarum is widely utilized in food industry, we highlight some of the most important new developments in fermented food for combating CVD; providing an insight into these fermented foods can assist scientists in improving the quality of these foods as well as alleviating patients’ CVD symptoms. We hope that in the future functional foods fermented by Lb. plantarum can be developed and incorporated into the daily diet to assist medication in alleviating CVD to some extent, and maintaining good health.
Collapse
|