1
|
Campbell DE, Mehr S, Moscatelli OG, Anderson RP, Tye-Din JA. Immune therapies in coeliac disease and food allergies: Advances, challenges, and opportunities. Semin Immunol 2025; 78:101960. [PMID: 40273881 DOI: 10.1016/j.smim.2025.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/19/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
Coeliac disease and food allergy management primarily relies on the strict avoidance of dietary antigens. This approach is challenging to maintain in real-world settings and in food allergy carries the risk of life-threatening anaphylaxis. Despite their distinct pathogenesis, both disorders are driven by maladaptive responses to dietary proteins, creating opportunities for shared treatment strategies. In food allergy, desensitisation therapies such as oral, sublingual, and epicutaneous immunotherapy are well-established, complemented by biologics like omalizumab and dupilumab. However, the induction of sustained tolerance remains challenging. In contrast, therapeutic advancements for coeliac disease are still in their early stages. Current efforts focus on gluten detoxification or modification, immune blockade or modulation, tolerogenic approaches, and barrier restoration. Emerging therapies, including JAK and BTK inhibitors and microbiome-targeted interventions, support further targeted treatment options for both conditions. Biomarkers tracking gluten-specific T cells have emerged as valuable tools for immunomonitoring and symptom assessment in coeliac disease, although standardisation of patient-reported outcome measures and gluten challenge protocols is still needed. Food allergy trials are reliant on double-blind placebo-controlled food challenges to measure allergen reactivity, but these are time-consuming, carry risks, and underscore the need for surrogate biomarkers. The successful development of immune-targeted therapies will require building an immune toolset to optimally assess systemic responses to antigens in both conditions. Clinically, this could lead to better outcomes for patients who might otherwise remain undiagnosed or untreated due to the absence of significant enteropathy or allergen-specific symptoms.
Collapse
Affiliation(s)
- Dianne E Campbell
- Children's Hospital at Westmead, Sydney, New South Wales, Australia; University of Sydney, Sydney, New South Wales, Australia; National Allergy Centre of Excellence, Murdoch Children's Research Institute, Parkville, Victora, Australia
| | - Sam Mehr
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Olivia G Moscatelli
- Immunology Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Robert P Anderson
- Gastroenterology Service, Mackay Base Hospital, West Mackay, Queensland, Australia
| | - Jason A Tye-Din
- Immunology Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; Department of Gastroenterology, the Royal Melbourne Hospital, Parkville, Victoria, Australia; The Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Xie Y, Liu F, Wu Y, Zhu Y, Jiang Y, Wu Q, Dong Z, Liu K. Inflammation in cancer: therapeutic opportunities from new insights. Mol Cancer 2025; 24:51. [PMID: 39994787 PMCID: PMC11849313 DOI: 10.1186/s12943-025-02243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
As one part of the innate immune response to external stimuli, chronic inflammation increases the risk of various cancers, and tumor-promoting inflammation is considered one of the enabling characteristics of cancer development. Recently, there has been growing evidence on the role of anti-inflammation therapy in cancer prevention and treatment. And researchers have already achieved several noteworthy outcomes. In the review, we explored the underlying mechanisms by which inflammation affects the occurrence and development of cancer. The pro- or anti-tumor effects of these inflammatory factors such as interleukin, interferon, chemokine, inflammasome, and extracellular matrix are discussed. Since FDA-approved anti-inflammation drugs like aspirin show obvious anti-tumor effects, these drugs have unique advantages due to their relatively fewer side effects with long-term use compared to chemotherapy drugs. The characteristics make them promising candidates for cancer chemoprevention. Overall, this review discusses the role of these inflammatory molecules in carcinogenesis of cancer and new inflammation molecules-directed therapeutic opportunities, ranging from cytokine inhibitors/agonists, inflammasome inhibitors, some inhibitors that have already been or are expected to be applied in clinical practice, as well as recent discoveries of the anti-tumor effect of non-steroidal anti-inflammatory drugs and steroidal anti-inflammatory drugs. The advantages and disadvantages of their application in cancer chemoprevention are also discussed.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Fangfang Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Yunfei Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yuer Zhu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanan Jiang
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Qiong Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Zigang Dong
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
3
|
Noori E, Hashemi N, Rezaee D, Maleki R, Shams F, Kazemi B, Bandepour M, Rahimi F. Potential therapeutic options for celiac Disease: An update on Current evidence from Gluten-Free diet to cell therapy. Int Immunopharmacol 2024; 133:112020. [PMID: 38608449 DOI: 10.1016/j.intimp.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Celiac disease (CD) is a chronic autoimmune enteropathy and multifactorial disease caused by inappropriate immune responses to gluten in the small intestine. Weight loss, anemia, osteoporosis, arthritis, and hepatitis are among the extraintestinal manifestations of active CD. Currently, a strict lifelong gluten-free diet (GFD) is the only safe, effective, and available treatment. Despite the social burden, high expenses, and challenges of following a GFD, 2 to 5 percent of patients do not demonstrate clinical or pathophysiological improvement. Therefore, we need novel and alternative therapeutic approaches for patients. Innovative approaches encompass a broad spectrum of strategies, including enzymatic degradation of gluten, inhibition of intestinal permeability, modulation of the immune response, inhibition of the transglutaminase 2 (TG2) enzyme, blocking antigen presentation by HLA-DQ2/8, and induction of tolerance. Hence, this review is focused on comprehensive therapeutic strategies ranging from dietary approaches to novel methods such as antigen-based immunotherapy, cell and gene therapy, and the usage of nanoparticles for CD treatment.
Collapse
Affiliation(s)
- Effat Noori
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran; Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandepour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Rahimi
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
4
|
Malakar M, Paiva PDDO, Beruto M, da Cunha Neto AR. Review of recent advances in post-harvest techniques for tropical cut flowers and future prospects: Heliconia as a case-study. FRONTIERS IN PLANT SCIENCE 2023; 14:1221346. [PMID: 37575938 PMCID: PMC10419226 DOI: 10.3389/fpls.2023.1221346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023]
Abstract
Aesthetic attributes and easy-to-grow nature of tropical cut flowers (TCFs) have contributedto their potential for increased production. The dearth of information regarding agronomic practices and lack of planting materials are the key hindrances against their fast expansion. Unconventional high-temperature storage requirements and the anatomy of the peduncle contribute topoor vase life performance, while troublesome packaging and transport due to unusual size and structureprimarily cause post-harvest quality deterioration. Nonetheless, the exotic floral structuresconsequently increase market demand, particularly in temperate countries. This boosts studies aimed at overcoming post-harvest hindrances. While a few TCFs (Anthurium, Strelitzia, Alpinia, and a few orchids) are under the spotlight, many others remain behind the veil. Heliconia, an emerging specialty TCF (False Bird-of-Paradise, family Heliconiaceae), is one of them. The structural uniquenessand dazzling hues of Heliconia genotypes facilitate shifting its position from the back to the forefrontof the world floriculture trade. The unsatisfactory state-of-the-art of Heliconia research and the absence of any review exclusively on it are the key impetus for structuring this review. In addition to the aforementioned setbacks, impaired water uptake capacity after harvest, high chilling sensitivity, and the proneness of xylem ducts to microbial occlusion may be counted as a few additional factors that hinder its commercialization. This review demonstrates the state-of-the-art of post-harvest research while also conceptualizing the implementation of advanced biotechnological aid to alleviate the challenges, primarily focusing on Heliconia (the model crop here) along with some relevant literature on its other allied members. Standard harvesting indices, grading, and packaging are also part of the entire post-harvest operational chain, but since these phases are barely considered in Heliconia and the majority of tropical ornamentals except a few, a comprehensive account of these aspects has also been given. The hypothesized cues to nip chilling injury, resorting to different bio-chemical treatments, nano-based technology, and advanced packaging techniques, may help overcome preservation difficulties and propel its transition from niche to the commercial flower market. In a nutshell, readers will gain a comprehensive overview of how optimum post-harvest handling practices can rewardingly characterize this unique group of TCFs as the most remunerative component.
Collapse
Affiliation(s)
- Moumita Malakar
- Department of Horticulture & Floriculture, Central University of Tamil Nadu, Thiruvarur, India
| | | | - Margherita Beruto
- International Society for Horticultural Science (ISHS), Ornamental Plant Division, San Remo, Italy
| | | |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW To describe recent advances on nonceliac gluten sensitivity (NCGS), a recently described disorder characterized by variable symptoms and frequent irritable bowel syndrome (IBS)-like manifestations. RECENT FINDINGS The recent description of disease-triggering wheat components other than gluten, such as fructans and amylase-trypsin inhibitors (ATIs), definitely suggests that nonceliac wheat sensitivity (NCWS) is a better 'umbrella' terminology than NCGS. Self-reported NCWS is very common worldwide, particularly in patients seen at the gastroenterology clinic, but many of these diagnoses are not confirmed by standard clinical criteria. A biomarker of NCWS is still lacking, however, subtle histological features at the small intestinal biopsy may facilitate diagnosis. Treatment of NCWS is based on the gluten-free diet (GFD). The GFD has proven to be an effective treatment of a significant proportion of NCWS-related IBS patients. Dietary therapies for IBS, including the GFD, should be offered by dietitians who first assess dietary triggers and then tailor the intervention according to patient choice. Pioneer studies are under way to test the therapeutic efficacy of supplemental gluten-digesting enzyme preparations in patients with NCWS. SUMMARY Recent studies highlight interesting pathophysiological and clinical features of NCWS. Many questions remain, however, unanswered, such as the epidemiology, a biomarker(s), and the natural history of this clinical entity.
Collapse
Affiliation(s)
- Carlo Catassi
- Department of Odontostomatologic and Specialized Clinical Sciences, Polytechnic University of Marche, Ancona
| | - Giulia Catassi
- Pediatric Gastroenterology and Liver Unit, Department of Maternal and Child Health, Sapienza-University of Rome, Rome, Italy
| | - Loris Naspi
- Department of Psychology, Humboldt University, Berlin, Germany
| |
Collapse
|
6
|
Das T, Anand U, Pal T, Mandal S, Kumar M, Radha, Gopalakrishnan AV, Lastra JMPDL, Dey A. Exploring the potential of CRISPR/Cas genome editing for vegetable crop improvement: An overview of challenges and approaches. Biotechnol Bioeng 2023; 120:1215-1228. [PMID: 36740587 DOI: 10.1002/bit.28344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/12/2022] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Vegetables provide many nutrients in the form of fiber, vitamins, and minerals, which make them an important part of our diet. Numerous biotic and abiotic stresses can affect crop growth, quality, and yield. Traditional and modern breeding strategies to improve plant traits are slow and resource intensive. Therefore, it is necessary to find new approaches for crop improvement. Clustered regularly interspaced short palindromic repeats/CRISPR associated 9 (CRISPR/Cas9) is a genome editing tool that can be used to modify targeted genes for desirable traits with greater efficiency and accuracy. By using CRISPR/Cas9 editing to precisely mutate key genes, it is possible to rapidly generate new germplasm resources for the promotion of important agronomic traits. This is made possible by the availability of whole genome sequencing data and information on the function of genes responsible for important traits. In addition, CRISPR/Cas9 systems have revolutionized agriculture, making genome editing more versatile. Currently, genome editing of vegetable crops is limited to a few vegetable varieties (tomato, sweet potato, potato, carrot, squash, eggplant, etc.) due to lack of regeneration protocols and sufficient genome sequencing data. In this article, we summarize recent studies on the application of CRISPR/Cas9 in improving vegetable trait development and the potential for future improvement.
Collapse
Affiliation(s)
- Tuyelee Das
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Tarun Pal
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, Tenerife, Spain
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
7
|
Zhang C, Chen G, Tang G, Xu X, Feng Z, Lu Y, Chan YT, Wu J, Chen Y, Xu L, Ren Q, Yuan H, Yang DH, Chen ZS, Wang N, Feng Y. Multi-component Chinese medicine formulas for drug discovery: State of the art and future perspectives. ACTA MATERIA MEDICA 2023; 2. [DOI: 10.15212/amm-2022-0049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
For hundreds of years, the drug discovery and development industry has aimed at identifying single components with a clear mechanism of action as desirable candidates for potential drugs. However, this conventional strategy of drug discovery and development has faced challenges including a low success rate and high development costs. Herein, we critically review state-of-the-art drug discovery and development based on multi-component Chinese medicine formulas. We review the policies and application status of new drugs based on multi-component Chinese medicines in the US, China, and the European Union. Moreover, we illustrate several excellent cases of ongoing applications. Biomedical technologies that may facilitate drug discovery and development based on multi-component Chinese medicine formulas are discussed, including network pharmacology, integrative omics, CRISPR gene editing, and chemometrics. Finally, we discuss potential problems and solutions in pre-clinical and clinical research in drug discovery and development based on multi-component Chinese medicine formulas. We hope that this review will promote discussion of the roles of multi-component Chinese medicine formulas in the discovery and development of new drugs for the treatment of human diseases.
Collapse
|
8
|
Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022; 27:5730. [PMID: 36080493 PMCID: PMC9457814 DOI: 10.3390/molecules27175730] [Citation(s) in RCA: 328] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is one of the malignancies that affects men and significantly contributes to increased mortality rates in men globally. Patients affected with prostate cancer present with either a localized or advanced disease. In this review, we aim to provide a holistic overview of prostate cancer, including the diagnosis of the disease, mutations leading to the onset and progression of the disease, and treatment options. Prostate cancer diagnoses include a digital rectal examination, prostate-specific antigen analysis, and prostate biopsies. Mutations in certain genes are linked to the onset, progression, and metastasis of the cancer. Treatment for localized prostate cancer encompasses active surveillance, ablative radiotherapy, and radical prostatectomy. Men who relapse or present metastatic prostate cancer receive androgen deprivation therapy (ADT), salvage radiotherapy, and chemotherapy. Currently, available treatment options are more effective when used as combination therapy; however, despite available treatment options, prostate cancer remains to be incurable. There has been ongoing research on finding and identifying other treatment approaches such as the use of traditional medicine, the application of nanotechnologies, and gene therapy to combat prostate cancer, drug resistance, as well as to reduce the adverse effects that come with current treatment options. In this article, we summarize the genes involved in prostate cancer, available treatment options, and current research on alternative treatment options.
Collapse
Affiliation(s)
- Mamello Sekhoacha
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
| | - Keamogetswe Riet
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Paballo Motloung
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Lemohang Gumenku
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Ayodeji Adegoke
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Samson Mashele
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| |
Collapse
|
9
|
Catassi C, Verdu EF, Bai JC, Lionetti E. Coeliac disease. Lancet 2022; 399:2413-2426. [PMID: 35691302 DOI: 10.1016/s0140-6736(22)00794-2] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Coeliac disease is an autoimmune disorder that primarily affects the small intestine, and is caused by the ingestion of gluten in genetically susceptible individuals. Prevalence in the general population ranges from 0·5% to 2%, with an average of about 1%. The development of the coeliac enteropathy depends on a complex immune response to gluten proteins, including both adaptive and innate mechanisms. Clinical presentation of coeliac disease is highly variable and includes classical and non-classical gastrointestinal symptoms, extraintestinal manifestations, and subclinical cases. The disease is associated with a risk of complications, such as osteoporosis and intestinal lymphoma. Diagnosis of coeliac disease requires a positive serology (IgA anti-transglutaminase 2 and anti-endomysial antibodies) and villous atrophy on small-intestinal biopsy. Treatment involves a gluten-free diet; however, owing to the high psychosocial burden of such a diet, research into alternative pharmacological treatments is currently very active.
Collapse
Affiliation(s)
- Carlo Catassi
- Department of Specialized Clinical Sciences and Odontostomatology, Polytechnic University of Marche, Ancona, Italy; Celiac Center and Mucosal Immunology and Biology Research, MassGeneral Hospital for Children-Harvard Medical School, Boston, MA, USA.
| | - Elena F Verdu
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Julio Cesar Bai
- Department of Medicine, Dr C Bonorino Udaondo Gastroenterology Hospital, Buenos Aires, Argentina; Research Institutes, Universidad del Salvador, Buenos Aires, Argentina
| | - Elena Lionetti
- Department of Specialized Clinical Sciences and Odontostomatology, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
10
|
Nazir R, Mandal S, Mitra S, Ghorai M, Das N, Jha NK, Majumder M, Pandey DK, Dey A. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genome-editing toolkit to enhance salt stress tolerance in rice and wheat. PHYSIOLOGIA PLANTARUM 2022; 174:e13642. [PMID: 35099818 DOI: 10.1111/ppl.13642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/02/2022] [Accepted: 01/27/2022] [Indexed: 05/14/2023]
Abstract
The rice and wheat agricultural system is the primary source of food for billions across the world. However, the productivity and long-term sustainability of rice and wheat are threatened by a large number of abiotic stresses, especially salinity stress. Salinity has a significant impact on plant development and productivity and is one of the leading causes of crop yield losses in agricultural soils worldwide. Over the last few decades, several attempts have been undertaken to enhance salinity stress tolerance, most of which have relied on traditional or molecular breeding approaches. These approaches have so far been insufficient in addressing the issues of abiotic stress. However, due to the availability of genome sequences for cereal crops like rice and wheat and the development of genome editing techniques like clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9), it is now possible to "edit" genes and influence key traits. Here, we review the application of the CRISPR/Cas9 system in both rice (Oryza sativa L.) and wheat (Triticum aestivum L.) to develop salinity tolerant cultivars. The CRISPR/Cas genome editing toolkit holds great promise of producing cereal crops tolerant to salt stress to increase agriculture resilience with a strong impact on the environment and public health.
Collapse
Affiliation(s)
- Romaan Nazir
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sicon Mitra
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Neela Das
- Department of Botany, Rishi Bankim Chandra College, Naihati, West Bengal, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | | | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Wheat Breeding, Fertilizers, and Pesticides: Do They Contribute to the Increasing Immunogenic Properties of Modern Wheat? GASTROINTESTINAL DISORDERS 2021. [DOI: 10.3390/gidisord3040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Celiac disease (CD) is a small intestinal inflammatory condition where consumption of gluten induces a T-cell mediated immune response that damages the intestinal mucosa in susceptible individuals. CD affects at least 1% of the world’s population. The increasing prevalence of CD has been reported over the last few decades. However, the reason for this increase is not known so far. Certain factors such as increase in awareness and the development of advanced and highly sensitive diagnostic screening markers are considered significant factors for this increase. Wheat breeding strategies, fertilizers, and pesticides, particularly herbicides, are also thought to have a role in the increasing prevalence. However, less is known about this issue. In this review, we investigated the role of these agronomic practices in depth. Our literature-based results showed that wheat breeding, use of nitrogen-based fertilizers, and herbicides cannot be solely responsible for the increase in celiac prevalence. However, applying nitrogen fertilizers is associated with an increase in gluten in wheat, which increases the risk of developing celiac-specific symptoms in gluten-sensitive individuals. Additionally, clustered regularly interspaced short palindromic repeats (CRISPR) techniques can edit multiple gliadin genes, resulting in a low-immunogenic wheat variety that is safe for such individuals.
Collapse
|
12
|
Rasheed A, Gill RA, Hassan MU, Mahmood A, Qari S, Zaman QU, Ilyas M, Aamer M, Batool M, Li H, Wu Z. A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises. Curr Issues Mol Biol 2021; 43:1950-1976. [PMID: 34889892 PMCID: PMC8929161 DOI: 10.3390/cimb43030135] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022] Open
Abstract
Genome editing (GE) has revolutionized the biological sciences by creating a novel approach for manipulating the genomes of living organisms. Many tools have been developed in recent years to enable the editing of complex genomes. Therefore, a reliable and rapid approach for increasing yield and tolerance to various environmental stresses is necessary to sustain agricultural crop production for global food security. This critical review elaborates the GE tools used for crop improvement. These tools include mega-nucleases (MNs), such as zinc-finger nucleases (ZFNs), and transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Specifically, this review addresses the latest advancements in the role of CRISPR/Cas9 for genome manipulation for major crop improvement, including yield and quality development of biotic stress- and abiotic stress-tolerant crops. Implementation of this technique will lead to the production of non-transgene crops with preferred characteristics that can result in enhanced yield capacity under various environmental stresses. The CRISPR/Cas9 technique can be combined with current and potential breeding methods (e.g., speed breeding and omics-assisted breeding) to enhance agricultural productivity to ensure food security. We have also discussed the challenges and limitations of CRISPR/Cas9. This information will be useful to plant breeders and researchers in the thorough investigation of the use of CRISPR/Cas9 to boost crops by targeting the gene of interest.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Crops Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (A.R.); (H.L.)
| | - Rafaqat Ali Gill
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (R.A.G.); (Q.U.Z.)
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (M.A.)
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Sameer Qari
- Biology Department, (Genetics and Molecular Biology Central Laboratory), Aljumum University College, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Qamar U. Zaman
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (R.A.G.); (Q.U.Z.)
| | - Muhammad Ilyas
- University College of Dera Murad Jamali, Nasirabad 80700, Balochistan, Pakistan;
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.U.H.); (M.A.)
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Huijie Li
- Key Laboratory of Crops Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (A.R.); (H.L.)
- College of Humanity and Public Administration, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ziming Wu
- Key Laboratory of Crops Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (A.R.); (H.L.)
| |
Collapse
|