1
|
Naghdi S, Rezaei M, Tabarsa M, Abdollahi M. Structure, functionality and bioactivity of sulfated polysaccharide extracted from rainbow trout byproducts: pH-shift method vs enzymatic hydrolysis. Food Chem 2025; 479:143665. [PMID: 40081063 DOI: 10.1016/j.foodchem.2025.143665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/11/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
Here, a novel method for sequentially extracting sulfated polysaccharides (SPs) from Oncorhynchus mykiss byproducts using alkaline/acid solubilization followed by isoelectric precipitation is compared with conventional enzymatic hydrolysis. Alkaline solubilization (SP-Alk) yielded SPs (2.46 %) comparable to the enzymatic method (SP-Enz, 2.77 %), while acidic solubilization (SP-Aci) yielded 1.96 %. SP-Alk showed comparable carbohydrate and sulfate content but lower protein than SP-Enz. Additionally, SP-Alk showed the highest monosaccharide content of rhamnose, mannose, glucose, and galactose. The extraction method affected the Molecular weight of SPs with SP-Enz having the lowest (44.95 kDa). Structural and thermal properties of the SPs were similar as revealed by FTIR/XRD and DSC, respectively. While SP-Enz exhibited slightly better antioxidant and functional properties (foaming, stability, emulsifying activity), SP-Alk showed a considerable performance with similar antimicrobial activity. Altogether, the pH-shift method can be a promising alternative for sequential extraction of SPs compared with enzymatic hydrolysis, avoiding enzymatic degradation of proteins.
Collapse
Affiliation(s)
- Shahab Naghdi
- Seafood Processing Department, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Masoud Rezaei
- Seafood Processing Department, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran.
| | - Mehdi Tabarsa
- Seafood Processing Department, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
2
|
Liu S, Xiang Y, Xu C, Sun J, Pi Y, Shao JH. Systematic preparation of animal-derived glycosaminoglycans: Research progress and industrial significance. Food Chem 2025; 464:141565. [PMID: 39406132 DOI: 10.1016/j.foodchem.2024.141565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 11/21/2024]
Abstract
Impurities and isomerized polysaccharides affect the analytical accuracy of glycosaminoglycans (GAGs) structure and bioactivity, hindering their application in food and medicine. Preparing homogeneous GAGs components is essential for exploring structure-potency relationships and facilitating industrial production. This review primarily summarizes research on animal-derived GAGs preparation over the past five years, standardizing the preparation process into four operational units: pre-extraction treatment, extraction of crude polysaccharides, refinement of crude polysaccharides, and separation of GAGs components. Analyzed for scientific research and industrial production, the principles and application conditions of traditional means and novel techniques to preparing GAGs are comprehensively emphasized, exploring the effects of different treatments on biological activity and structure. Current challenges and development trends are illuminated. This review aims to lay a foundation for the in-depth study of GAGs structure, bioactivity, and function, providing theoretical references for the comprehensive utilization of animal raw materials and the development of animal polysaccharide deep-processing industries.
Collapse
Affiliation(s)
- Sinong Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yanpeng Xiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chang Xu
- Foreign Languages Teaching Department, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yuzhen Pi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
3
|
Kumoro AC, Wardhani DH, Kusworo TD, Djaeni M, Azis YMF, Alhanif M, Ping TC. Ultrasound pretreatment and solvent extraction parameters effects on the nutritional characteristics of Indonesian shortfin eel ( Anguilla bicolor bicolor) protein concentrate. Food Chem X 2025; 25:102103. [PMID: 39810951 PMCID: PMC11732468 DOI: 10.1016/j.fochx.2024.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Protein concentrate (PC) is a potential solution to address the global protein shortage, with Indonesian shortfin eel being a suitable raw material. This research investigates the impact of ultrasound pretreatment and extraction parameters on the nutritional quality of eel protein concentrate (EPC). The study involved ultrasonic pretreatment at different times and power, and solvent extraction with different solvents, temperature, and solvent-solid-feed-ratio (SSFR). The results showed that the recommended conditions for EPC preparation were a mixture of ethanol-hexane, ultrasonic pretreatment at 250 W for 25 min, extraction temperature and SSFR of 40 °C and 6:1 v/w. The protein content of EPC increased gradually with the increase of SSFR until it reached a ratio of 6:1, further increase in SSFR promoted the development of a pseudo-homogeneous system, leading to a reduction in the solvent-eel flesh contact and the relative velocity between the extracting solvent and eel flesh, and consequently decreased the extraction yield. The prepared EPC is classified as type B EPC, with a protein content of 89.62 %w.b. and a lipid content of 2.21 %w.b. The EPC contains five types of peptides with a molecular weight of 5.00-76.00 kDa, with the main fraction having a MW ranging from 10.00 to 15.00 kDa, indicating potential for functional food products.
Collapse
Affiliation(s)
- Andri Cahyo Kumoro
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Dyah Hesti Wardhani
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Tutuk Djoko Kusworo
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Mohamad Djaeni
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | | | - Misbahudin Alhanif
- Chemical Engineering Study Program, Faculty of Industrial Technology, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
| | - Tan Chin Ping
- Department of Food Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
4
|
Pruvost L, Gerlei M, Paris C, Velot É, Kahn CJF, Bianchi A, Linder M. Chondroitin Sulfate Nanovectorized by LC-PUFAs Nanocarriers Extracted from Salmon ( Salmo salar) by Green Process with Decreased Inflammatory Marker Expression in Interleukin-1β-Stimulated Primary Human Chondrocytes In Vitro Culture. Mar Drugs 2024; 22:571. [PMID: 39728145 DOI: 10.3390/md22120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Chondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the valorization of lipids and CS, both extracted from salmon co-products through enzymatic processes. The polar lipids, naturally rich in long-chain fatty acids (docosahexaenoic acid DHA C22:6 n-3 and eicosapentaenoic acid EPA C20:5 n-3), and the CS, primarily located in the nasal cartilage, were separated and concentrated before being characterized using various techniques to determine functional and lipid composition. These compounds were then used to formulate liposomes of 63 to 95 nm in size composed of 19.38% of DHA and 7.44% of EPA and encapsulating CS extract with a Δdi-4S/Δdi-6S ratio of 0.53 at 2 weight masses (10-30 kDa and >30 kDa) or CS standard all at two different concentrations. Liposomes were tested on human chondrocytes in inflamed conditions. Thus, compatibility tests, the expression of various inflammation markers at transcriptional and molecular levels, nitrites, and the amount of collagenase produced were analyzed. The results showed that CS, in synergy with the liposomes, played a positive role in combating chondrocyte inflammation even at a low concentration.
Collapse
Affiliation(s)
- Louis Pruvost
- LIBio, Université de Lorraine, F-54000 Nancy, France
| | | | - Cédric Paris
- LIBio, Université de Lorraine, F-54000 Nancy, France
| | - Émilie Velot
- CNRS, IMoPA, Université de Lorraine, F-54000 Nancy, France
| | | | - Arnaud Bianchi
- CNRS, IMoPA, Université de Lorraine, F-54000 Nancy, France
| | - Michel Linder
- LIBio, Université de Lorraine, F-54000 Nancy, France
| |
Collapse
|
5
|
Zhan H, Liu J, Sun X, Su C, Wan Q, Cai J, Sun Y, Mu Y, Sun H, Zhang Q, Chen X, Feng C. Inflammatory regulation of squid cartilage gelatin with different molecular weights for treatment of chronic wounds in diabetes. Int J Biol Macromol 2024; 282:136793. [PMID: 39447784 DOI: 10.1016/j.ijbiomac.2024.136793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/28/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Squid, as a very important economic marine species, accounts for 5 % of the total catch of fish and cephalopods. The waste from the processing process of squid can be used for collagen extraction, which has great application value in the field of biomedical materials. Here, we obtained squid cartilage gelatin (SCG) with different molecular weights by adjusti.ng the reaction conditions and used for the treatment of chronic wounds in diabetes. SCG extracted at low temperatures and short heating times demonstrated a more intact structure, higher molecular weight, and superior gel stability. Based on cell study and transcriptome analysis, SCG with high molecular weight significantly promoted cell adhesion, because it provided more contact sites for cells, whereas small molecules of SCG could directly reduce inflammation. Animal studies have demonstrated that SCG significantly promotes diabetic wound healing as evidenced by reducing inflammation, inducing vascular regeneration, promoting tissue growth, re-epithelialization, collagen deposition and remodeling. This study elucidated the immunoregulatory mechanisms of SCG with different molecular weights, and validated its potential application in chronic wound healing in diabetes.
Collapse
Affiliation(s)
- Hao Zhan
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Jiahao Liu
- Minimally invasive interventional therapy center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 5# Donghai Middle Road, Qingdao 266000, Shandong Province, China
| | - Xiaojie Sun
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Chang Su
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Qinglan Wan
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Jingyu Cai
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yunji Sun
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yuzhi Mu
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Haotong Sun
- Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572024, Hainan Province, China
| | - Qichen Zhang
- Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572024, Hainan Province, China
| | - Xiguang Chen
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572024, Hainan Province, China; Laoshan Laboratory, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Chao Feng
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572024, Hainan Province, China.
| |
Collapse
|
6
|
Zhao Q, Li Z, Liu Z, Zhao X, Fan Y, Dong P, Hou H. Preparation, typical structural characteristics and relieving effects on osteoarthritis of squid cartilage type II collagen peptides. Food Res Int 2024; 191:114697. [PMID: 39059951 DOI: 10.1016/j.foodres.2024.114697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
The promoting effects of collagen and its derivatives on bone health have been uncovered. However, the structure and effects of type II collagen peptides from squid cartilage (SCIIP) on osteoarthritis still need to be clarified. In this study, SCIIP was prepared from squid throat cartilage with pretreatment by 0.2 mol/L NaOH at a liquid-solid ratio of 10:1 for 18 h and hydrolyzation using alkaline protease and flavourzyme at 50 °C for 4 h. The structure of SCIIP was characterized as a molecular weight lower than 5 kDa (accounting for 87.7 %), a high glycine level of 35.0 %, typical FTIR and CD features of collagen peptides, and a repetitive sequence of Gly-X-Y. GP(Hyp)GPD and GPAGP(Hyp)GD were separated and identified from SCIIP, and their binding energies with TLR4/MD-2 were - 8.4 and - 8.0 kcal/mol, respectively. SCIIP effectively inhibited NO production in RAW264.7 macrophages and alleviated osteoarthritis in rats through the TLR4/NF-κB pathway. Therefore, SCIIP exhibited the potential for application as an anti-osteoarthritis supplement.
Collapse
Affiliation(s)
- Qianqian Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Zhaoxia Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Zeyu Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Xue Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Yan Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Ping Dong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province, 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province, 266000, PR China.
| |
Collapse
|
7
|
Bougatef H, Volpi N, Ben Amor I, Capitani F, Maccari F, Gargouri J, Sila A, Bougatef A. Chondroitin sulfate from heads of corb: Recovery, structural analysis and assessment of anticoagulant activity. Carbohydr Res 2024; 541:109163. [PMID: 38805806 DOI: 10.1016/j.carres.2024.109163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
In this study, glycosaminoglycans (GAGs) were extracted from corb (Sciaena umbra) heads and thoroughly examined for their structure. Through cellulose acetate electrophoresis, the GAGs were identified as chondroitin sulfate (CS), with a recovery yield of 10.35 %. The CS exhibited notable characteristics including a high sulfate content (12.4 %) and an average molecular weight of 38.32 kDa. Further analysis via 1H NMR spectroscopy and SAX-HPLC revealed that the CS primarily consisted of alternating units predominantly composed of monosulfated disaccharides at positions 6 and 4 of GalNAc (52.6 % and 38.8 %, respectively). The ratio of sulfate groups between positions 4 and 6 of GalNAc (4/6 ratio) was approximately 0.74, resulting in an overall charge density of 0.98. Thermal properties of the CS were assessed using techniques such as differential scanning calorimetry and thermogravimetric analysis. Notably, the CS demonstrated concentration-dependent prolongation of activated partial thromboplastin time (aPTT) and thrombin time (TT) while showing no effect on platelet function. At 200 μg/mL, aPTT and TT coagulation times were 1.4 and 3.7 times faster than the control, respectively. These findings suggest that CS derived from corb heads holds promise as an anticoagulant agent for therapy, although further clinical investigations are necessary to validate its efficacy.
Collapse
Affiliation(s)
- Hajer Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax, 3038, Tunisia
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - Ikram Ben Amor
- Sfax Regional Blood Transfusion Center, El-Ain Road Km 0.5, 3003, Sfax, Tunisia
| | - Federica Capitani
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - Jalel Gargouri
- Laboratory of Hematology, Medical Faculty of Sfax. University of Sfax, Magida Boulila Avenue, 3029, Sfax, Tunisia
| | - Assaad Sila
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax, 3038, Tunisia; Department of Life Sciences, Faculty of Sciences of Gafsa, University of Gafsa, 2100, Gafsa, Tunisia
| | - Ali Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax, 3038, Tunisia; High Institute of Biotechnology of Sfax, University of Sfax, Sfax, 3038, Tunisia.
| |
Collapse
|
8
|
Saha SK, Zhu Y, Murray P, Madden L. Future proofing of chondroitin sulphate production: Importance of sustainability and quality for the end-applications. Int J Biol Macromol 2024; 267:131577. [PMID: 38615853 DOI: 10.1016/j.ijbiomac.2024.131577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Chondroitin sulphates (CSs) are the most well-known glycosaminoglycans (GAGs) found in any living organism, from microorganisms to invertebrates and vertebrates (including humans), and provide several health benefits. The applications of CSs are numerous including tissue engineering, osteoarthritis treatment, antiviral, cosmetics, and skincare applications. The current commercial production of CSs mostly uses animal, bovine, porcine, and avian tissues as well as marine organisms, marine mammals, sharks, and other fish. The production process consists of tissue hydrolysis, protein removal, and purification using various methods. Mostly, these are chemical-dependent and are complex, multi-step processes. There is a developing trend for abandonment of harsh extraction chemicals and their substitution with different green-extraction technologies, however, these are still in their infancy. The quality of CSs is the first and foremost requirement for end-applications and is dependent on the extraction and purification methodologies used. The final products will show different bio-functional properties, depending on their origin and production methodology. This is a comprehensive review of the characteristics, properties, uses, sources, and extraction methods of CSs. This review emphasises the need for extraction and purification processes to be environmentally friendly and gentle, followed by product analysis and quality control to ensure the expected bioactivity of CSs.
Collapse
Affiliation(s)
- Sushanta Kumar Saha
- Shannon Applied Biotechnology Centre, LIFE Health and Biosciences Research Institute, Technological University of the Shannon: Midlands Midwest, Moylish Park, Limerick V94 E8YF, Ireland.
| | - Yin Zhu
- Shannon Applied Biotechnology Centre, LIFE Health and Biosciences Research Institute, Technological University of the Shannon: Midlands Midwest, Moylish Park, Limerick V94 E8YF, Ireland
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, LIFE Health and Biosciences Research Institute, Technological University of the Shannon: Midlands Midwest, Moylish Park, Limerick V94 E8YF, Ireland
| | - Lena Madden
- Shannon Applied Biotechnology Centre, LIFE Health and Biosciences Research Institute, Technological University of the Shannon: Midlands Midwest, Moylish Park, Limerick V94 E8YF, Ireland
| |
Collapse
|
9
|
Chihaoui M, Lazreg H, M’hamed AC, Bouchemal N, Chahed L, Messaoudi I, Majdoub H, Laschet J, Boisson-Vidal C, Mansour MB, Chaubet F, Maaroufi RM. Comparative Analysis of Physicochemical Characteristics of Chondroitin Sulfate from Avian Cartilage: Antioxidant, Anti-inflammatory and Anti-nociceptive Properties. CHEMISTRY AFRICA 2024; 7:1269-1282. [DOI: 10.1007/s42250-023-00812-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/24/2023] [Indexed: 01/04/2025]
|
10
|
Tsai MF, Nargotra P, Liao KT, Wang HMD, Tsai YH, Liu YC, Kuo CH. High oxidative stability of a complex fish liver oil nano-capsules in response to long-term storage, and to hyperthermal and sunlight exposure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3594-3605. [PMID: 38149759 DOI: 10.1002/jsfa.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND In this study, a biocompatible nano-carrying platform using chitosan (ChI) and chondroitin sulfate (ChS) was developed for the encapsulation of cobia liver oil (CBLO) to prevent its oxidation and improve its absorption. An ionic gelation method was applied to encapsulate CBLO with different weight ratios (from 1.0 to 1.5) to obtain ChS-ChI nano-capsules (ChS-ChI@CBLO NCs). RESULTS Morphological observations of the nano-capsules revealed a spherical shape and diameter around 267-381 nm. The maximum loading capacity (LC) and encapsulation efficiency (EE) for ChS-ChI@CBLO NCs estimated by thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) analysis were 25.7% and 56.2%, respectively. The structural stability of ChS-ChI@CBLO NCs was confirmed through differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis; moreover DSC also further confirmed the oxidative stability of ChS-ChI@CBLO NCs. Fourier-transform infrared (FTIR) spectra confirmed the excellent stability of ChS-ChI@CBLO NCs against high temperature and sunlight exposure. Biocompatibility analysis also verified the non-toxicity of ChS-ChI@CBLO NCs, further indicating safety and potential application in complex-nutritional supplements. CONCLUSION Nano-degree of ChS-ChI@CBLO NCs has a loading capacity and encapsulation efficiency of around 16.5 ~ 25.7% and 33.4 ~ 56.2%, respectively, for encapsulation of CBLO. Characterization results also indicate that ChS-ChI@CBLO NCs display high oxidative stability against long-term, hyperthermal, and sunlight exposure. Bioassay results confirm that the ChS-ChI@CBLO NCs are safe and non-toxic. This study demonstrates that nano-capsules are also beneficial in preventing sensitive compounds from metamorphosis, and are non-toxic. These materials are suitable for use in the food and pharmaceutical industries. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming-Fong Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Kuan-Ting Liao
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
12
|
Yao Y, Tang H, Ma H, Liu Z, Huang J, Yang X, Zhao L, Yuan Q. Chondroitin Sulfate/Dermatan Sulfate Hybrid Chains from Swim Bladder: Isolation, Structural Analysis, and Anticoagulant Activity. Mar Drugs 2023; 22:9. [PMID: 38276647 PMCID: PMC10817686 DOI: 10.3390/md22010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Glycosaminoglycans (GAGs) with unique structures from marine animals show intriguing pharmacological activities and negligible biological risks, providing more options for us to explore safer agents. The swim bladder is a tonic food and folk medicine, and its GAGs show good anticoagulant activity. In this study, two GAGs, CMG-1.0 and GMG-1.0, were extracted and isolated from the swim bladder of Cynoscion microlepidotus and Gadus morhua. The physicochemical properties, precise structural characteristics, and anticoagulant activities of these GAGs were determined for the first time. The analysis results of the CMG-1.0 and GMG-1.0 showed that they were chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chains with molecular weights of 109.3 kDa and 123.1 kDa, respectively. They were mainly composed of the repeating disaccharide unit of -{IdoA-α1,3-GalNAc4S-β1,4-}- (DS-A). The DS-B disaccharide unit of -{IdoA2S-α1,3-GalNAc4S-β1,4-}- also existed in both CMG-1.0 and GMG-1.0. CMG-1.0 had a higher proportion of CS-O disaccharide unit -{-GlcA-β1,3-GalNAc-β1,4-}- but a lower proportion of CS-E disaccharide unit -{-GlcA-β1,3-GalNAc4S6S-β1,4-}- than GMG-1.0. The disaccharide compositions of the GAGs varied in a species-specific manner. Anticoagulant activity assay revealed that both CMG-1.0 and GMG-1.0 had potent anticoagulant activity, which can significantly prolong activated partial thromboplastin time. GMG-1.0 also can prolong the thrombin time. CMG-1.0 showed no intrinsic tenase inhibition activity, while GMG-1.0 can obviously inhibit intrinsic tenase with EC50 of 58 nM. Their significantly different anticoagulant activities may be due to their different disaccharide structural units and proportions. These findings suggested that swim bladder by-products of fish processing of these two marine organisms may be used as a source of anticoagulants.
Collapse
Affiliation(s)
- Yue Yao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Hao Tang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Haiqiong Ma
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Zidong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Jinwen Huang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Xiufen Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Longyan Zhao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Qingxia Yuan
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| |
Collapse
|
13
|
Chikha SB, Bougatef H, Capitani F, Ben Amor I, Maccari F, Gargouri J, Sila A, Volpi N, Bougatef A. Composition and Anticoagulant Potential of Chondroitin Sulfate and Dermatan Sulfate from Inedible Parts of Garfish ( Belone belone). Foods 2023; 12:3887. [PMID: 37959006 PMCID: PMC10647378 DOI: 10.3390/foods12213887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Glycosaminoglycans (GAGs) play a crucial role due to their significant biomedical functions. Chondroitin sulfate (CS) and dermatan sulfate (DS), the main representative family of GAGs, were extracted and purified from garfish (Belone belone) by-products, i.e., skin (GSB), bones (GCB), and heads (GHB), and their composition and anticoagulant activity were investigated. CS/DS were purified by ion-exchange chromatography with yields of 8.1% for heads, 3.7% for skin, and 1.4% for bones. Cellulose acetate electrophoresis was also explored for analyzing the extracted CS/DS. Interestingly, GHB, GSB, and GCB possessed sulfate contents of 21 ± 2%, 20 ± 1%, and 20 ± 1.5%, respectively. Physico-chemical analysis showed that there were no significant differences (p > 0.05) between the variances for sulfate, uronic acid, and total sugars in the GAGs extracted from the different parts of fish. Disaccharide analysis by SAX-HPLC showed that the GSB and GCB were predominately composed of ΔDi-4S [ΔUA-GalNAc 6S] (74.78% and 69.22%, respectively) and ΔDi-2,4S [ΔUA2S-GalNAc 4S] (10.92% and 6.55%, respectively). However, the GHB consisted of 25.55% ΔDi-6S [ΔUA-GalNAc 6S] and 6.28% ΔDi-2,6S [ΔUA2S-GalNAc 4S]. Moreover, classical anticoagulation tests were also used to measure their anticoagulant properties in vitro, which included the activated partial thromboplastin time, prothrombin time, and thrombin time. The CS/DS isolated from garfish by-products exhibited potent anticoagulant effects. The purified CS/DS showed exceptional anticoagulant properties according to this research and can be considered as a new agent with anticoagulant properties.
Collapse
Affiliation(s)
- Sawssen Ben Chikha
- Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; (S.B.C.); (H.B.); (A.S.)
| | - Hajer Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; (S.B.C.); (H.B.); (A.S.)
| | - Federica Capitani
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Ikram Ben Amor
- Sfax Regional Blood Transfusion Center, El-Ain Road km 0.5, Sfax 3003, Tunisia;
| | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy; (F.M.); (N.V.)
| | - Jalel Gargouri
- Laboratory of Hematology, Medical Faculty of Sfax, University of Sfax, Magida Boulila Avenue, Sfax 3029, Tunisia;
| | - Assaad Sila
- Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; (S.B.C.); (H.B.); (A.S.)
- Department of Life Sciences, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2100, Tunisia
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy; (F.M.); (N.V.)
| | - Ali Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; (S.B.C.); (H.B.); (A.S.)
- High Institute of Biotechnology of Sfax, University of Sfax, Sfax 3038, Tunisia
| |
Collapse
|
14
|
Tsai MF, Huang CY, Nargotra P, Tang WR, Liao KT, Lee YC, Lin CM, Lin C, Shieh CJ, Kuo CH. Green extraction and purification of chondroitin sulfate from jumbo squid cartilage by a novel procedure combined with enzyme, ultrasound and hollow fiber dialysis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1711-1722. [PMID: 37187986 PMCID: PMC10169932 DOI: 10.1007/s13197-023-05701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 05/17/2023]
Abstract
Chondroitin sulfate (ChS) from marine sources is gaining attention. The purpose of this study was to extract ChS from jumbo squid cartilage (Dosidicus gigas) using ultrasound-assisted enzymatic extraction (UAEE). An ultrasound with protease assistance, including either alcalase, papain or Protin NY100 was used to extract ChS. The results showed that alcalase had the best extraction efficiency. The response surface methodology was employed to evaluate the relationship between extraction conditions and extraction yield of ChS. The ridge max analysis revealed a maximum extraction yield of 11.9 mg ml- 1 with an extraction temperature of 59.40 °C, an extraction time of 24.01 min, a pH of 8.25, and an alcalase concentration of 3.60%. Compared to ethanol precipitation, purification using a hollow fiber dialyzer (HFD) had a higher extraction yield of 62.72% and purity of 85.96%. The structure characteristics of ChS were identified using FTIR, 1 H-NMR, and 13 C-NMR to confirm that the purified ChS structure was present in the form of chondroitin-4-sulfate and chondroitin-6-sulfate. The results of this study provide a green and efficient process for extraction and purification of ChS and are essential for the use of ChS for the development and production of nutrient food products or pharmaceuticals. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05701-7.
Collapse
Affiliation(s)
- Ming-Fong Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
| | - Wen-Rui Tang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
| | - Kuan-Ting Liao
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
| | - Yi-Chen Lee
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
| | - Chia-Min Lin
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
| | - Chwen-Jen Shieh
- Biotechnology Center, National Chung Hsing University, Taichung, 402 Taiwan
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
- Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung, 811 Taiwan
| |
Collapse
|
15
|
Deaminative-cleaved S. monotuberculatus fucosylated glycosaminoglycan: Structural elucidation and anticoagulant activity. Carbohydr Polym 2022; 298:120072. [DOI: 10.1016/j.carbpol.2022.120072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 09/01/2022] [Indexed: 01/01/2023]
|
16
|
Structure and Flocculation of Ion Associates of Carrageenan and Poly(diallyldimethylammonium chloride) Depending on the Component Ratio. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228075. [PMID: 36432178 PMCID: PMC9699330 DOI: 10.3390/molecules27228075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
Carrageenan is a polysaccharide of a plant origin, commonly used as a thickening and gelling agent in the food, pharmaceutical, and cosmetic industries. Due to the negative charges of its sulfate groups, carrageenan macromolecules strongly interact with oppositely charged polyions. The ionic complexes of carrageenan with poly(diallyldimethylammonium chloride) were obtained at the molar ratios 4:1, 2;1, 1:1, 1:2, and 1:4. The structure and characteristics of the polyanion-polycation associates were studied by XRD, IR, optical microscopy, and via sedimentation and particle size measurements. It was found that the suspended particles flocculate and settle fastest when the molar ratio of the polyions is near 1:1. Turbidimetric titration experiments enabled us to measure the molar ratio of cationic to anionic groups at the onset of flocculation, and the value in question was found to be 1:1.32. In other words, a mass of 511 mg carrageenan corresponds to one millimole of ester sulfate (monobasic) groups. The measurement of the onset of flocculation has been employed for the accurate determination of carrageenan in real samples of food products. The color and turbidity of the sample do not interfere with the determination results.
Collapse
|
17
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
18
|
Continuous Production of DHA and EPA Ethyl Esters via Lipase-Catalyzed Transesterification in an Ultrasonic Packed-Bed Bioreactor. Catalysts 2022. [DOI: 10.3390/catal12040404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ethyl esters of omega-3 fatty acids are active pharmaceutical ingredients used for the reduction in triglycerides in the treatment of hyperlipidemia. Herein, an ultrasonic packed-bed bioreactor was developed for continuous production of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) ethyl esters from DHA+EPA concentrate and ethyl acetate (EA) using an immobilized lipase, Novozym® 435, as a biocatalyst. A three-level–two-factor central composite design combined with a response surface methodology (RSM) was employed to evaluate the packed-bed bioreactor with or without ultrasonication on the conversion of DHA + EPA ethyl ester. The highest conversion of 99% was achieved with ultrasonication at the condition of 1 mL min−1 flow rate and 100 mM DHA + EPA concentration. Our results also showed that the ultrasonic packed-bed bioreactor has a higher external mass transfer coefficient and a lower external substrate concentration on the surface of the immobilized enzyme. The effect of ultrasound was also demonstrated by a kinetic model in the batch reaction that the specificity constant (V′max/K2) in the ultrasonic bath was 8.9 times higher than that of the shaking bath, indicating the ultrasonication increased the affinity between enzymes and substrates and, therefore, increasing reaction rate. An experiment performed under the highest conversion conditions showed that the enzyme in the bioreactor remained stable at least for 5 days and maintained a 98% conversion.
Collapse
|