1
|
Baisch JS, Grohs M, Ferreira PAA, Ugalde GA, Tres MV, Zabot GL. Protein and Oil Contents, Micro- and Macronutrients, and Other Quality Indicators of Soybean Cultivated in Lowland Fields. Foods 2024; 13:3719. [PMID: 39682791 DOI: 10.3390/foods13233719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The cultivation of soybean is being expanded in traditional areas cultivated with rice, called the lowlands. However, soil characteristics are different from those in the highlands, which influences the exportation of nutrients to the grains. Therefore, this study aimed to determine the physical-chemical and technological characteristics of soybean grains harvested in lowlands in Brazil. Two-year crops (2021/22 and 2022/23) were used with two types of soil preparation (scarified and non-scarified) and six cover crop treatments (oats, clover, ryegrass, fallow, ryegrass + oats, and ryegrass + clover). The influence of these treatments was evaluated in terms of the grain yield, oil and protein contents, oil composition, quality indices (acidity, peroxide, iodine, and saponification), and contents of ash, carbohydrates, and micro- and macronutrients. Grain yield achieved an average of 3829.8 kg ha-1. Soil scarification positively influenced grain yield and contributed to higher protein and oil contents, with maximum values of 32.7 wt% and 27.6 wt%, respectively. The main fatty acids in oil were oleic acid (22.13 ± 1.48-26.32 ± 0.98%) and linoleic acid (36.32 ± 1.57-52.18 ± 1.58%). The macronutrients phosphorus (5.12 ± 0.39-5.79 ± 0.37 kg ton-1), calcium (2.79 ± 0.19-3.05 ± 0.18 kg ton-1), magnesium (2.37 ± 0.14-2.57 ± 0.13 kg ton-1), and sulfur (2.85 ± 0.18-3.19 ± 0.20 kg ton-1), and the micronutrients copper (9.73 ± 1.42-11.68 ± 1.07 g ton-1), iron (111.42 ± 6.86-122.02 ± 5.00 g ton-1), and manganese (43.58 ± 3.34-47.08 ± 2.74 g ton-1) were in agreement with the values reached in the highlands. For potassium (18.87 ± 0.38-29.29 ± 1.44 kg ton-1) and zinc (30.02 ± 2.45-38.00 ± 1.03 g ton-1), soil scarification allows higher levels of absorption. The use of ryegrass as a cover crop allows higher levels of nitrogen absorption, reaching up to 44.93 ± 2.74 kg ton-1. Regarding the acidity (0.19-0.52%), peroxide (9.64-16.39 mEq O2 kg-1), iodine (85.34-91.91 mg KI g-1), and saponification (182.33-203.74 mg KOH g-1) indices of the oil, all values were obtained in accordance with the scientific literature. The conclusions of this study indicate that it is possible to cultivate soybean in lowlands after developing the proper soil preparation. Consequently, the yields are increased, and grains will benefit from higher protein and oil contents, enhancing soybean quality for commercialization.
Collapse
Affiliation(s)
- Jéssica Streck Baisch
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 3013 Taufik Germano Rd., Universitário II DC, Cachoeira do Sul 96503-205, Brazil
| | - Mara Grohs
- Rio Grandense Rice Institute (IRGA), 493 Marechal Floriano St, Cachoeira do Sul 96506-750, Brazil
| | | | - Gustavo Andrade Ugalde
- Department of Rural Engineering, Federal University of Santa Maria, 1000 Roraima Av, Santa Maria 97105-900, Brazil
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 3013 Taufik Germano Rd., Universitário II DC, Cachoeira do Sul 96503-205, Brazil
| | - Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 3013 Taufik Germano Rd., Universitário II DC, Cachoeira do Sul 96503-205, Brazil
| |
Collapse
|
2
|
Park Y, Lee JS, Park S, Kim YJ, Mani V, Lee K, Kwon SJ, Park SU, Kim JK. Metabolite Changes in Soybean ( Glycine max) Leaves during the Entire Growth Period. ACS OMEGA 2023; 8:41718-41727. [PMID: 37969993 PMCID: PMC10633961 DOI: 10.1021/acsomega.3c06043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Although soybean (Glycine max) leaves generate building blocks to produce seeds, a comprehensive understanding of the metabolic changes in soybean leaves during the entire growth stages is limited. Here, we investigated the metabolite changes in soybean leaves from five cultivars among four vegetative (V) and eight reproductive (R) stages using metabolite profiling coupled with chemometrics. Principal component analysis (PCA) of all samples showed a clear separation by growth stage. The total amount of monosaccharides and organic acids for energy production were highly detected in the V stage samples, accumulating in concentrations 2.5 and 1.7 times higher than in the R stage samples, respectively. The results of partial least-squares-discriminant analysis (PLS-DA) revealed a clear separation from R1 to R5 by the first PLS, suggesting significant alterations in the metabolic networks up to R5. After flowering, the stage of seed formation, R5, was associated with lower levels of most amino acids and an accumulation of phytosterols. The negative correlation observed between amino acids and phytosterol levels suggests a sophisticated coordination between carbon and nitrogen metabolism in plant, ensuring and supporting optimal growth (r = -0.50085, P = 0.0001). In addition, R-stage samples had decreased monosaccharide levels, indicating redistribution to seeds and senescence-related metabolite changes. Thus, metabolite profiling coupled with chemometrics could be a useful tool for investigating alterations in metabolic networks during various plant growth and development stages. Furthermore, we observed variations in flavonoid contents among the different cultivars. The results could be a basis of further studies on the source-sink interactions in the plant system.
Collapse
Affiliation(s)
- Young
Jin Park
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon22012, Republic of Korea
| | - Jong Sung Lee
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon22012, Republic of Korea
| | - Soyoung Park
- Metabolic
Engineering Division, National Institute
of Agricultural Sciences, Rural Development Administration, Jeonju54874, Republic of Korea
| | - Ye Jin Kim
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon22012, Republic of Korea
| | - Vimalraj Mani
- Metabolic
Engineering Division, National Institute
of Agricultural Sciences, Rural Development Administration, Jeonju54874, Republic of Korea
| | - Kijong Lee
- Metabolic
Engineering Division, National Institute
of Agricultural Sciences, Rural Development Administration, Jeonju54874, Republic of Korea
| | - Soo Jin Kwon
- Metabolic
Engineering Division, National Institute
of Agricultural Sciences, Rural Development Administration, Jeonju54874, Republic of Korea
| | - Sang Un Park
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon34134, Republic of Korea
| | - Jae Kwang Kim
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon22012, Republic of Korea
- Convergence
Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Incheon22012, Republic of Korea
| |
Collapse
|
3
|
Shim KC, Kang Y, Song JH, Kim YJ, Kim JK, Kim C, Tai TH, Park I, Ahn SN. A Frameshift Mutation in the Mg-Chelatase I Subunit Gene OsCHLI Is Associated with a Lethal Chlorophyll-Deficient, Yellow Seedling Phenotype in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2831. [PMID: 37570985 PMCID: PMC10420988 DOI: 10.3390/plants12152831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Chlorophyll biosynthesis is a crucial biological process in plants, and chlorophyll content is one of the most important traits in rice breeding programs. In this study, we identified a lethal, chlorophyll-deficient, yellow seedling (YS) phenotype segregating in progeny of CR5055-21, an F2 plant derived from a backcross between Korean japonica variety 'Hwaseong' (Oryza sativa) and CR5029, which is mostly Hwaseong with a small amount of Oryza grandiglumis chromosome segments. The segregation of the mutant phenotype was consistent with a single gene recessive mutation. Light microscopy of YS leaf cross-sections revealed loosely arranged mesophyll cells and sparse parenchyma in contrast to wildtype. In addition, transmission electron microscopy showed that chloroplasts did not develop in the mesophyll cells of the YS mutant. Quantitative trait loci (QTL)-seq analysis did not detect any significant QTL, however, examination of the individual delta-SNP index identified a 2-bp deletion (AG) in the OsCHLI gene, a magnesium (Mg)-chelatase subunit. A dCAPs marker was designed and genotyping of a segregating population (n = 275) showed that the mutant phenotype co-segregated with the marker. The 2-bp deletion was predicted to result in a frameshift mutation generating a premature termination. The truncated protein likely affects formation and function of Mg-chelatase, which consists of three different subunits that together catalyze the first committed step of chlorophyll biosynthesis. Transcriptome analysis showed that photosynthesis and carbohydrate metabolism pathways were significantly altered although expression of OsCHLI was not. Chlorophyll- and carotenoid-related genes were also differentially expressed in the YS mutant. Our findings demonstrated that OsCHLI plays an important role in leaf pigment biosynthesis and leaf structure development in rice.
Collapse
Affiliation(s)
- Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA 95616, USA;
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Yuna Kang
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
| | - Jun-Ho Song
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Ye Jin Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.J.K.); (J.K.K.)
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.J.K.); (J.K.K.)
| | - Changsoo Kim
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
| | - Thomas H. Tai
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA 95616, USA;
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Inkyu Park
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
| |
Collapse
|
4
|
Sheng O, Yin Z, Huang W, Chen M, Du M, Kong Q, Fernie AR, Yi G, Yan S. Metabolic profiling reveals genotype-associated alterations in carotenoid content during banana postharvest ripening. Food Chem 2023; 403:134380. [DOI: 10.1016/j.foodchem.2022.134380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
|
5
|
Behling AH, Winter DJ, Ganley ARD, Cox MP. Cross-kingdom transcriptomic trends in the evolution of hybrid gene expression. J Evol Biol 2022; 35:1126-1137. [PMID: 35830478 PMCID: PMC9546207 DOI: 10.1111/jeb.14059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Hybridization is a route to speciation that occurs widely across the eukaryote tree of life. The success of allopolyploids (hybrid species with increased ploidy) and homoploid hybrids (with unchanged ploidy) is well documented. However, their formation and establishment is not straightforward, with a suite of near‐instantaneous and longer term biological repercussions faced by the new species. Central to these challenges is the rewiring of gene regulatory networks following the merger of distinct genomes inherited from both parental species. Research on the evolution of hybrid gene expression has largely involved studies on a single hybrid species or a few gene families. Here, we present the first standardized transcriptome‐wide study exploring the fates of genes following hybridization across three kingdoms: animals, plants and fungi. Within each kingdom, we pair an allopolyploid system with a closely related homoploid hybrid to decouple the influence of increased ploidy from genome merger. Genome merger, not changes in ploidy, has the greatest effect on posthybridization expression patterns across all study systems. Strikingly, we find that differentially expressed genes in parent species preferentially switch to more similar expression in hybrids across all kingdoms, likely as a consequence of regulatory trans‐acting cross‐talk within the hybrid nucleus. We also highlight the prevalence of gene loss or silencing among extremely differentially expressed genes in hybrid species across all kingdoms. These shared patterns suggest that the evolutionary process of hybridization leads to common high‐level expression outcomes, regardless of the particular species or kingdom.
Collapse
Affiliation(s)
- Anna H Behling
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - David J Winter
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Murray P Cox
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Mo Z, Duan L, Pu Y, Tian Z, Ke Y, Luo W, Pi K, Huang Y, Nie Q, Liu R. Proteomics and Co-expression Network Analysis Reveal the Importance of Hub Proteins and Metabolic Pathways in Nicotine Synthesis and Accumulation in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:860455. [PMID: 35574122 PMCID: PMC9096834 DOI: 10.3389/fpls.2022.860455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/24/2022] [Indexed: 05/31/2023]
Abstract
Nicotine is a unique alkaloid present in tobacco that is widely used in cigarettes and in the agricultural, chemical, and pharmaceutical industries. However, the research on nicotine is mostly limited to its synthesis pathways, and only a few studies have explored the effects of other metabolic pathways on nicotine precursors. Regulating the nicotine content in tobacco can greatly promoting the application of nicotine in other fields. In this study, we performed global data-independent acquisition proteomics analysis of four tobacco varieties. Of the four varieties, one had high nicotine content and three had a low nicotine content. A total of 31,259 distinct peptides and 6,018 proteins across two samples were identified. A total of 45 differentially expressed proteins (DEPs) co-existed in the three comparison groups and were mainly involved in the transport and metallic processes of the substances. Most DEPs were enriched in the biosynthesis of secondary metals, glutathione metabolism, carbon metabolism, and glycolysis/gluconeogenesis. In addition, the weighted gene co-expression network analysis identified an expression module closely related to the nicotine content (Brown, r = 0.74, P = 0.006). Gene Ontology annotation and Kyoto Encyclopaedia of Genes and Genomes enrichment analysis showed that the module proteins were mainly involved in the synthesis and metabolism of nicotine precursors such as arginine, ornithine aspartate, proline, and glutathione. The increased levels of these precursors lead to the synthesis and accumulation of nicotine in plants. More importantly, these proteins regulate nicotine synthesis by affecting the formation of putrescine, which is the core intermediate product in nicotine anabolism. Our results provide a reference for tobacco variety selection with a suitable nicotine content and regulation of the nicotine content. Additionally, the results highlight the importance of other precursor metabolism in nicotine synthesis.
Collapse
Affiliation(s)
- Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Lili Duan
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Yuanyuan Pu
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Zonglin Tian
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Yuzhou Ke
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Wen Luo
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Kai Pi
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Ying Huang
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Qiong Nie
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Renxiang Liu
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Rha CS, Jang EK, Hong YD, Park WS. Supervised Statistical Learning Prediction of Soybean Varieties and Cultivation Sites Using Rapid UPLC-MS Separation, Method Validation, and Targeted Metabolomic Analysis of 31 Phenolic Compounds in the Leaves. Metabolites 2021; 11:884. [PMID: 34940642 PMCID: PMC8704512 DOI: 10.3390/metabo11120884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/02/2023] Open
Abstract
Soybean (Glycine max; SB) leaf (SL) is an abundant non-conventional edible resource that possesses value-adding bioactive compounds. We predicted the attributes of SB based on the metabolomes of an SL using targeted metabolomics. The SB was planted in two cities, and SLs were regularly obtained from the SB plant. Nine flavonol glycosides were purified from SLs, and a validated simultaneous quantification method was used to establish rapid separation by ultrahigh-performance liquid chromatography-mass detection. Changes in 31 targeted compounds were monitored, and the compounds were discriminated by various supervised machine learning (ML) models. Isoflavones, quercetin derivatives, and flavonol derivatives were discriminators for cultivation days, varieties, and cultivation sites, respectively, using the combined criteria of supervised ML models. The neural model exhibited higher prediction power of the factors with high fitness and low misclassification rates while other models showed lower. We propose that a set of phytochemicals of SL is a useful predictor for discriminating characteristics of edible plants.
Collapse
Affiliation(s)
- Chan-Su Rha
- AMOREPACIFIC R&D Center, Yongin 17074, Korea; (Y.D.H.); (W.S.P.)
| | - Eun Kyu Jang
- Gyeonggi-do Agricultural Research & Extension Services, Hwaseong 18388, Korea;
| | - Yong Deog Hong
- AMOREPACIFIC R&D Center, Yongin 17074, Korea; (Y.D.H.); (W.S.P.)
| | - Won Seok Park
- AMOREPACIFIC R&D Center, Yongin 17074, Korea; (Y.D.H.); (W.S.P.)
| |
Collapse
|