1
|
Du Y, Shim SM, Wang L, Gao X, Fu X. Impact of Monascus purpureus combined with Lactobacillus plantarum and Saccharomyces cerevisiae fermentation on nutritional and flavor characteristics of Pyropia yezoensis. Food Chem 2025; 472:142973. [PMID: 39855140 DOI: 10.1016/j.foodchem.2025.142973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Fermentation can promote various properties of food. This study investigated the impact of fermentation by Monascus purpureus combined with Lactobacillus plantarum and Saccharomyces cerevisiae on the physicochemical and flavor characteristics of Pyropia yezoensis. Results indicate that the protein and free amino acid content increased threefold. A total of 62 volatile flavor compounds were identified by GC-IMS. Alcohols, ketones and esters were enhanced with 2- to 6-fold, while aldehydes were reduced by 76.56 %, contributing to the enhancement of pleasant fragrances and the reduction of fishy and seawater odors. As for the non-volatile properties, the content of organic acids and free amino acids increased from 2.18 mg/g and 0.19 mg/g to 46.03 mg/g and 4.93 mg/g, respectively, as assessed by HPLC and amino acid analyzer. The metabolic pathways of non-volatile substances were speculated upon. This work provides a basic theory and a practical reference for fermentation food processing of P. yezoensis.
Collapse
Affiliation(s)
- Yanli Du
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299th Sansha Road, Qingdao 266000, China
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-Ro, Kwangjin-Gu, Seoul 05006, South Korea
| | - Lei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299th Sansha Road, Qingdao 266000, China
| | - Xin Gao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299th Sansha Road, Qingdao 266000, China
| | - Xiaoting Fu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299th Sansha Road, Qingdao 266000, China.
| |
Collapse
|
2
|
Kang X, Tan Z, Zhao Y, Yao L, Sheng X, Guo Y. Explainable Deep Learning to Predict Kelp Geographical Origin from Volatile Organic Compound Analysis. Foods 2025; 14:1269. [PMID: 40238501 PMCID: PMC11988594 DOI: 10.3390/foods14071269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
In addition to its flavor and nutritional value, the origin of kelp has become a crucial factor influencing consumer choices. Nevertheless, research on kelp's origin traceability by volatile organic compound (VOC) analysis is lacking, and the application of deep learning in this field remains scarce due to its black-box nature. To address this gap, we attempted to identify the origin of kelp by analyzing its VOCs in conjunction with explainable deep learning. In this work, we identified 115 distinct VOCs in kelp samples using gas chromatography coupled with ion mobility spectroscopy (GC-IMS), of which 68 categories were discernible. Consequently, we developed a comprehensible one-dimensional convolutional neural network (1D-CNN) model that incorporated 107 VOCs exhibiting significant regional disparities (p < 0.05). The model successfully discerns the origin of kelp, achieving perfect metrics across accuracy (100%), precision (100%), recall (100%), F1 score (100%), and AUC (1.0). SHapley Additive exPlanations (SHAP) analysis highlighted the impact of features such as 1-Octen-3-ol-M, (+)-limonene, allyl sulfide-D, 1-hydroxy-2-propanone-D, and (E)-2-hexen-1-al-M on the model output. This research provides deeper insights into how critical product features correlate with specific geographic information, which in turn boosts consumer trust and promotes practical utilization in actual settings.
Collapse
Affiliation(s)
- Xuming Kang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.K.); (Z.T.); (Y.Z.); (L.Y.); (X.S.)
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.K.); (Z.T.); (Y.Z.); (L.Y.); (X.S.)
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yanfang Zhao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.K.); (Z.T.); (Y.Z.); (L.Y.); (X.S.)
| | - Lin Yao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.K.); (Z.T.); (Y.Z.); (L.Y.); (X.S.)
| | - Xiaofeng Sheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.K.); (Z.T.); (Y.Z.); (L.Y.); (X.S.)
| | - Yingying Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.K.); (Z.T.); (Y.Z.); (L.Y.); (X.S.)
| |
Collapse
|
3
|
Guo Z, Teng W, Xiao H, Zhang Y, Luo Y, Pang J, Ning Q. Immobilization of Saccharomyces cerevisiae on polyhydroxyalkanoate/konjac glucan nanofiber membranes: Characterization, immobilization efficiency and cellular activity. Carbohydr Polym 2025; 352:122606. [PMID: 39843040 DOI: 10.1016/j.carbpol.2024.122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 01/24/2025]
Abstract
Yeast immobilization systems can recoup yeast losses in continuous batch fermentation and relieve substrate or product inhibition. We report the use of solution blow spinning process to efficiently prepare polyhydroxyalkanoate (PHB) /konjac glucomannan (KGM) nanofiber membranes as immobilization carriers for Saccharomyces cerevisiae. The prepared PHB/KGM nanofiber membranes had fiber diameters similar to the scale of yeast cells. Incorporating KGM significantly enhanced the porosity (from 87.21 % to 91.74 %), crystallinity, and hydrophilicity (reducing water contact angle from 135.8° to 110.1°), while increasing the specific surface area (from 10.24 to 17.79 m2/g) of pure PHB nanofiber membranes. Thermal stability was maintained (degradation temperatures above 250 °C). These changes enhanced the force between the nanofiber membranes and the cells and facilitated their autoimmobilization on the nanofiber membranes. The highest yeast immobilization efficiency of 87.93 % could be achieved at a KGM addition ratio of 400:2. Yeast showed no loss of cellular activity on the immobilized carriers of natural materials and maintained or even improved fermentation kinetics during at least three consecutive alcoholic fermentations These findings indicate that PHB/KGM nanofiber membranes can serve as effective carriers for yeast immobilization, promoting the sustainable production of fermented foods.
Collapse
Affiliation(s)
- Zhen Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huibao Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanting Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhao Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Qian Ning
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Liu L, Liu T, Zhao Y, Zeng M, Xu X. Integrating metabolite profiles and macrotranscriptomics to explore the flavor improvement mechanisms of fermented oyster hydrolysates with endogenous microbe (Lactobacillus pentosus) inoculation. Food Res Int 2025; 202:115712. [PMID: 39967166 DOI: 10.1016/j.foodres.2025.115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/21/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
The study investigates the impacts of indigenous bacterial strains inoculation specifically L. pentosus, on the flavor characteristics, microbial composition, and metabolite profiles of fermented oyster hydrolysates. This research aimed to elucidate potential mechanisms underlying the reduction of off-flavors in fermented hydrolysates. A total of 46 and 57 volatile compounds were detected by GC-MS and GC-IMS in hydrolysates inoculated with different core microbes, respectively. The 9 key volatile compounds detected by GC-MS analysis. (E, E)-2,4-heptadienal, heptanal, octanal, pentanal, and (E)-2-octenal reduced the off-flavor of the fermented oyster hydrolysate. Meanwhile 1-octen-3-ol, 3-octanone, 4-octanone, and (E, Z)-2,6-nonadienal enhanced the direct contribution of desirable flavors. Variation in 16 amino acids, 10 organic acids and 3 nucleotides were monitored to further understand the metabolic changes affecting flavor quality. Moreover, pyruvate decarboxylase [EC 4.1.1.1], phosphomannanase [EC 3.2.1.109], lipoyl-CoA synthetase [EC 6.3.2.4], and arginine kinase [EC 2.7.3.3] were the main microbiologically active enzymes. An increase in the content of aromatic compounds and a decrease in the content of C6-C9 unsaturated aldehydes through Lys, Phe, Asp, Glu, phosphoenolpyruvate, oleic acid, and linoleic acid metabolism pathways improved the flavor of oyster hydrolysates fermented by L. pentosus. This research provides a theoretical basis for leveraging autochthonous microbial fermentation to systematically improve flavor characteristics in fermented products.
Collapse
Affiliation(s)
- Li Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266400, China
| | - Tianhong Liu
- Marine Science research Institute of Shandong Province, Qingdao, Shandong Province 266100, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266400, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266400, China.
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266400, China.
| |
Collapse
|
5
|
Peng B, Xu L, Yu C, Hu M, Zhong B, Tu Z, Li J. The possible inhibition mechanism of low salt dry-curing on volatile flavor deterioration in refrigerated grass carp (Ctenopharyngodon idella) blocks: Metabolomics and microorganisms. Food Chem 2025; 463:141087. [PMID: 39265406 DOI: 10.1016/j.foodchem.2024.141087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
Complex microbial communities have an important impact on the flavor of low salt dry-curing (LSD)-pretreated grass carp blocks. Here, the flavors, metabolites, and bacterial diversity of LSD-pretreated fish during cold storage were analyzed using flavor analysis, metabolomics, and high-throughput sequencing to investigate their correlations in detail. LSD promoted the volatile flavor deterioration of grass carp blocks under 6 days of refrigeration but inhibited it under 15 days of refrigeration. Furthermore, 924 metabolites were identified in the refrigerated grass carp blocks, and LSD inhibited the growth of Psychrophilic dominant spoilage microorganisms (Proteobacteria) and promoted microbial abundance (Actinobacteriota, Firmicutes, Bacteroidota, and Cyanobacteria). Correlation analysis revealed that the degradation of phosphatidylcholine connected with the monomonas genus in LSD-pretreated fish blocks played a vital role in inhibiting the key volatile flavor (esters, aldehydes, and alcohols) deterioration. This information is useful for elucidating the inhibition mechanism of LSD on flavor deterioration in refrigerated fish blocks.
Collapse
Affiliation(s)
- Bin Peng
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Linju Xu
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chengwei Yu
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Mingming Hu
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Bizhen Zhong
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zongcai Tu
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jinlin Li
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
6
|
Jia X, Cui H, Qin S, Ren J, Zhang Z, An Q, Zhang N, Yang J, Yang Y, Fan G, Pan S. Characterizing and decoding the key odor compounds of Spirulina platensis at different processing stages by sensomics. Food Chem 2024; 461:140944. [PMID: 39182338 DOI: 10.1016/j.foodchem.2024.140944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Processing is an indispensable technology in the preparation of Spirulina platensis (S. platensis). The key odorants in liquids, muds, and powders from S. platensis (NM and GZ) were characterized. A total of 90 odorants were identified and 41 odorants were sniffed with the flavor dilution (FD) factors ranging from 1 to 729. Among them, nonanal, decanal, d-limonene, β-cyclocitral, and β-ionone with FD factors ≥1 were detected in S. platensis during the whole processing stages. In addition, heptanal, (E, E)-2,4-nonadienal, trans-4,5-epoxy-(E)-2-decenal, 1-hepten-3-one, isophorone, 3-ethyl-2,5-dimethylpyrazine, and α-ionone exhibited higher odor activity values in powders; β-myrcene, methional, and S-methyl methanethiosulphonate were key odorants in muds; while trans-3-penten-2-ol was key odorant in liquids. Besides, the GZ-mud presented stronger earthy and fishy odor than NM-mud. S. platensis powders have the stronger grassy odor, roasted odor, and marine odor than S. platensis muds. Overall, drying process promotes the formation of aldehydes, heterocyclic compounds, and terpenoids.
Collapse
Affiliation(s)
- Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhifeng Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Luo J, Liang L, Zhang J, Bi Y, Yang R, Sun B, Zhang Y. Effect of yeast (Saccharomyces cerevisiae) fermentation on conformational changes in pig liver proteins and their ability to bind to characteristic aldehydes. Food Chem 2024; 460:140637. [PMID: 39111139 DOI: 10.1016/j.foodchem.2024.140637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024]
Abstract
This study aimed to explore the potential of a fermentation technology to reduce off-flavour perception and its underlying mechanisms. Results revealed that yeast fermentation (YF) significantly ameliorated the off-flavour of pig liver (p < 0.05). Specifically, YF pre-treatment decreased the relative abundance of α-helix and fluorescence intensity while increasing the surface hydrophobicity and SS level and loosening the microstructure of myofibrillar proteins (MPs) in pig liver. Additionally, the appropriate fermentation treatments enhanced the MP-aldehyde binding capacity by 0.25-1.30 times, demonstrating that YF-induced conformational modifications in pig liver proteins made them more prone to interacting with characteristic aldehydes. Moreover, molecular docking results confirmed that hydrophobic interactions are the primary drivers of MP-aldehyde binding. These findings suggest that YF technology holds immense promise for modulating off-flavour perception in liver products by altering protein conformation.
Collapse
Affiliation(s)
- Jin Luo
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Li Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Jingcheng Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Yongzhao Bi
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China.
| |
Collapse
|
8
|
Gong J, Wang X, Ni H, Wang Y. The Volatile Compounds Change during Fermentation of Saccharina japonica Seedling. Foods 2024; 13:1992. [PMID: 38998498 PMCID: PMC11241180 DOI: 10.3390/foods13131992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
It is important to eliminate the fishy odor and improve the aroma quality of seafood. In this study, the Saccharina japonica (S. japonica) seedling, which is a new food material, was investigated for the effects of fermentation with Saccharomyces cerevisiae (S. cerevisiae) through sensory evaluation, GC-MS, and odor activity value (OAV) analysis. GC-MS analysis revealed the presence of 43 volatile compounds in the unfermented S. japonica seedling, with 1-octen-3-ol, hexanal, and trans-2,4-decadienal identified as the main contributors to its fishy odor. After fermentation with S. cerevisiae, 26 volatile compounds were identified in the S. japonica seedling. Notably, the major malodorous fish compounds, including 1-octen-3-ol, hexanal and trans-2,4-decadienal, were no longer present. The results indicate that fermentation with S. cerevisiae is an effective method for removing fishy malodor compounds and enhancing the volatile components with fruity, sweet, green, and floral notes in the Saccharina japonica seedling. This process facilitates the elimination of fishy malodor and enhance the fruity, sweet, green, and floral notes of S. japonica seeding and other seaweeds.
Collapse
Affiliation(s)
- Jingni Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaolin Wang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Lab of Food Microbiology and Enzyme, Jimei University, Xiamen 361021, China
- School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361000, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Youmei Institute of Intelligent Bio-Manufacturing, Foshan 528225, China
| |
Collapse
|
9
|
Gadhoumi H, Dhouafli Z, Yeddes W, serairi beji R, Miled K, Trifi M, Chirchi A, Saidani Tounsi M, Hayouni EA. Biochemical Composition, Antioxidant Capacity and Protective Effects of Three Fermented Plants Beverages on Hepatotoxicity and Nephrotoxicity Induced by Carbon Tetrachloride in Mice. Indian J Microbiol 2024; 64:229-243. [PMID: 38468731 PMCID: PMC10924858 DOI: 10.1007/s12088-023-01172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/30/2023] [Indexed: 03/13/2024] Open
Abstract
Functional beverages play an essential role in our modern life and contribute to nutritional well-being. Current efforts to understand and develop functional beverages to promote health and wellness have been enhanced. The present study aimed to investigate the production of three fermented plants beverages (FPBs) from aromatic and medicinal plants and to evaluate the fermented product in terms of physio-biochemical composition, the aromatic compounds, antioxidant activity, and in vivo protective effects on hepatotoxicity and nephrotoxicity induced by carbon tetrachloride (CCl4). The results showed that the fermented beverage NurtBio B had the highest levels of polyphenols, flavonoids, and tannins; 242.3 ± 12.4 µg GAE/mL, 106.4 ± 7.3 µg RE/mL and 94.2 ± 5.1 µg CE/mL, respectively. The aromatic profiles of the fermented beverages showed thirty-one interesting volatile compounds detected by GC-MS headspace analyses such as benzaldehyde, Eucalyptol, Fenchone, 3-Octadecyne, Estragole, and Benzene propanoic acid 1-methylethyl ester. In addition, the fermentation process was significantly improved, indicating its great potential as a functional food with both strong antioxidant activity and good flavor. In vivo administration of CCl4 in mice induced hepatotoxicity and nephrotoxicity by a significant rise in the levels of serum liver and kidney biomarkers. The protective effects of the FPBs showed that they significantly restored the majority of these biological parameters to normal levels, along with increase antioxidant enzyme activities, as well as an improvement of histopathological changes, suggesting their protective effects.
Collapse
Affiliation(s)
- Hamza Gadhoumi
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar, Tunis 2092, Tunis, Tunisia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Zohra Dhouafli
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Walid Yeddes
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Raja serairi beji
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Khaled Miled
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Mounir Trifi
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Abdelhamid Chirchi
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Moufida Saidani Tounsi
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - El Akrem Hayouni
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
10
|
Cui R, Zhang C, Pan ZH, Hu TG, Wu H. Probiotic-fermented edible herbs as functional foods: A review of current status, challenges, and strategies. Compr Rev Food Sci Food Saf 2024; 23:e13305. [PMID: 38379388 DOI: 10.1111/1541-4337.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Recently, consumers have become increasingly interested in natural, health-promoting, and chronic disease-preventing medicine and food homology (MFH). There has been accumulating evidence that many herbal medicines, including MFH, are biologically active due to their biotransformation through the intestinal microbiota. The emphasis of scientific investigation has moved from the functionally active role of MFH to the more subtle role of biotransformation of the active ingredients in probiotic-fermented MFH and their health benefits. This review provides an overview of the current status of research on probiotic-fermented MFH. Probiotics degrade toxins and anti-nutritional factors in MFH, improve the flavor of MFH, and increase its bioactive components through their transformative effects. Moreover, MFH can provide a material base for the growth of probiotics and promote the production of their metabolites. In addition, the health benefits of probiotic-fermented MFH in recent years, including antimicrobial, antioxidant, anti-inflammatory, anti-neurodegenerative, skin-protective, and gut microbiome-modulating effects, are summarized, and the health risks associated with them are also described. Finally, the future development of probiotic-fermented MFH is prospected in combination with modern development technologies, such as high-throughput screening technology, synthetic biology technology, and database construction technology. Overall, probiotic-fermented MFH has the potential to be used in functional food for preventing and improving people's health. In the future, personalized functional foods can be expected based on synthetic biology technology and a database on the functional role of probiotic-fermented MFH.
Collapse
Affiliation(s)
- Rui Cui
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Cong Zhang
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Zhen-Hui Pan
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
11
|
Liu L, Zhao Y, Zeng M, Xu X. Research progress of fishy odor in aquatic products: From substance identification, formation mechanism, to elimination pathway. Food Res Int 2024; 178:113914. [PMID: 38309863 DOI: 10.1016/j.foodres.2023.113914] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Fishy odor in aquatic products has a significant impact on the purchasing decisions of consumers. The production of aquatic products is a complex process involving culture, processing, transportation, and storage, which contribute to decreases in flavor and quality. This review systematically summarizes the fishy odor composition, identification methods, generation mechanism, and elimination methods of fishy odor compounds from their origin and formation to their elimination. Fishy odor compounds include aldehydes (hexanal, heptanal, and nonanal), alcohols (1-octen-3-ol), sulfur-containing compounds (dimethyl sulfide), and amines (trimethylamine). The mechanism of action of various factors affecting fishy odor is revealed, including environmental factors, enzymatic reactions, lipid oxidation, protein degradation, and microbial metabolism. Furthermore, the control and removal of fishy odor are briefly summarized and discussed, including masking, elimination, and conversion. This study provides a theoretical basis from source to elimination for achieving targeted regulation of the flavor of aquatic products, promoting industrial innovation and upgrading.
Collapse
Affiliation(s)
- Li Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
12
|
Ma W, Liang Z, He B, Wu Y, Chen Y, He Z, Chen B, Lin X, Luo L. Changes in the characteristic volatile aromatic compounds in tuna cooking liquid during fermentation and deodorization by Lactobacillus plantarum RP26 and Cyberlindnera fabianii JGM9-1. Food Chem X 2023; 20:100900. [PMID: 38144760 PMCID: PMC10739757 DOI: 10.1016/j.fochx.2023.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023] Open
Abstract
Tuna cooking liquid has unpleasant aroma. In our previous studies, Cyberlindnera fabianii JGM9-1 and Lactobacillus plantarum RP26 demonstrated the ability to degrade this unpleasant aroma. However, the mechanism of microbial deodorization remains unclear. In this study, tuna cooking liquid was fermented using JGM9-1 alone, RP26 alone, and a combination of both strains. Changes in volatile aromatic compounds during fermentation were analyzed using HS-SPME-GC/MS. The unpleasant aroma of tuna cooking liquid were nine characteristic aromatic compounds associated with fishy, stinky, and greasy aromas. Furthermore, we found that the fermentation of microbes removed these unpleasant aromatic compounds and replaced them with pleasant aromatic compounds that contributed to fruity, grassy, and floral aromas. Finally, we screened 21 strong pairwise correlations between the production and consumption of characteristic volatile aromatic compounds by RP26 and JGM9-1, through HCA, VIP, OAV and Spearman's pairwise correlation analysis. These results help to clarify the metabolic mechanisms of microbial deodorization in tuna cooking liquid.
Collapse
Affiliation(s)
- Wenjing Ma
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Zhangcheng Liang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Bing He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Yuxi Wu
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Yan Chen
- Fuzhou Hongdong Foods Co., Ltd, Fuzhou, Fujian, China
- Fujian Shenlan Biotechnology Co., Ltd, Fuzhou, Fujian, China
| | - Zhigang He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Bingyan Chen
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Xiaozi Lin
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Lianyu Luo
- Fuzhou Hongdong Foods Co., Ltd, Fuzhou, Fujian, China
- Fujian Shenlan Biotechnology Co., Ltd, Fuzhou, Fujian, China
| |
Collapse
|
13
|
Cheng H, Mei J, Xie J. The odor deterioration of tilapia (Oreochromis mossambicus) fillets during cold storage revealed by LC-MS based metabolomics and HS-SPME-GC-MS analysis. Food Chem 2023; 427:136699. [PMID: 37356266 DOI: 10.1016/j.foodchem.2023.136699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Odor deterioration of tilapia during cold storage is unavoidable and affects flavor and quality severely. Odor is characterized by the abundance of volatile compounds and metabolites. In this study, headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and metabolomic analysis were applied to explore the volatile compounds, differential metabolites, and metabolic pathways related to the odor deterioration of tilapia during cold storage. A total of 29 volatile compounds were detected to be associated with the odor deterioration of tilapia. And 485 differential metabolites were screened, of which 386 differential expressions were up-regulated and 99 differential expressions were down-regulated. Three major metabolic pathways including linoleic acid metabolism, alanine, aspartate, glutamate metabolism, and nucleotide metabolism were obtained. A potential metabolic network map was also proposed. This study contributes to revealing the metabolic mechanisms of odor deterioration in tilapia during cold storage and providing a theoretical reference for the regulation of flavor and quality.
Collapse
Affiliation(s)
- Hao Cheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| |
Collapse
|
14
|
Xiang L, Zhu W, Jiang B, Chen J, Zhou L, Zhong F. Volatile compounds analysis and biodegradation strategy of beany flavor in pea protein. Food Chem 2023; 402:134275. [DOI: 10.1016/j.foodchem.2022.134275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
|
15
|
Yan XT, Zhang Z, Wang Y, Zhang W, Zhang L, Liu Y, Chen D, Wang W, Ma W, Qian JY, Gu R. Antioxidant capacity, flavor and physicochemical properties of FH06 functional beverage fermented by lactic acid bacteria: a promising method to improve antioxidant activity and flavor of plant functional beverage. APPLIED BIOLOGICAL CHEMISTRY 2023; 66:7. [PMID: 36742290 PMCID: PMC9883607 DOI: 10.1186/s13765-022-00762-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
UNLABELLED The ability of natural plants to treat chronic diseases is closely related to their antioxidant function. Lactic acid bacteria (LAB) fermentation is an effective way to improve the nutritional value, biological activity and flavor of food. This study investigated the pH, titratable acidity, total polysaccharide, total flavone, total saponin, total polyphenol, and antioxidant activity of the FH06 beverage before and after probiotic fermentation. Results: After fermentation, FH06 had lower contents of total polysaccharides, total flavonoids, total saponins and total polyphenols but higher titratable acidity. The antioxidant activity was tested by total antioxidant capacity (FRAP method) and DPPH· scavenging ability. The FRAP value significantly increased after fermentation (P < 0.05), and the maximum increase was observed for Lactobacillus fermentum grx08 at 25.87%. For DPPH· scavenging ability, the value of all fermentations decreased, and L. fermentum grx08 had the smallest reduction at 2.21% (P < 0.05). The results of GC-MS and sensory analysis showed that fermentation eliminated bad flavors, such as grass, cassia and bitterness, and highlighted the fruit aroma and soft sour taste. Conclusion: The FRAP value and sensory flavor of FH06 fermentation by L. fermentum grx08 were significantly improved, indicating its great potential as a functional food with both strong antioxidant activity and good flavor. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s13765-022-00762-2.
Collapse
Affiliation(s)
- Xian-Tao Yan
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
- Department of Cuisine and Nutrition, Hanshan Normal University, Chaozhou, People’s Republic of China
| | - Ziqi Zhang
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Yubao Wang
- Tourism College of Zhejiang, Hangzhou, People’s Republic of China
| | - Wenmiao Zhang
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Longfei Zhang
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Yang Liu
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Dawei Chen
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Wenqiong Wang
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Wenlong Ma
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Jian-Ya Qian
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Ruixia Gu
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| |
Collapse
|
16
|
Li Y, Wu T, Deng X, Tian D, Ma C, Wang X, Li Y, Zhou H. Characteristic aroma compounds in naturally withered and combined withered γ-aminobutyric acid white tea revealed by HS-SPME-GC-MS and relative odor activity value. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Zhang S, Shang Z, Liu Z, Hu X, Yi J. Flavor production in fermented chayote inoculated with lactic acid bacteria strains: Genomics and metabolomics based analysis. Food Res Int 2023; 163:112224. [PMID: 36596153 DOI: 10.1016/j.foodres.2022.112224] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
In this study, genomics and metabolomics were combined to reveal possible bio-synthetic pathways of core flavor compounds in pickled chayote via lactic acid bacteria (LAB) fermentation. The Lactiplantibacillus plantarum, Levilactobacillus brevis, and Lacticaseibacillus paracasei were selected as core LAB strains with better flavor-producing ability for chayote fermentation. The genomic results showed L. plantarum contained the largest number of metabolism annotated genes, while L. brevis had the fewest. Besides, the largest number of volatile compounds was detected in chayote fermented by L. plantarum, followed by L. brevis and L. paracasei. Some unique odor-active compounds (aldehydes, esters, and alcohols) and taste-active compounds (amino acids and dipeptides) were produced by different LAB strains. Accordingly, phenylalanine metabolic pathway (M00360), amino acid metabolic decomposition pathway (the Ehrlich pathway) and the anabolic pathway (the Harris pathway), and fatty acid biosynthesis pathway (M00061) were the main biosynthesis pathway involved in the flavor formation via LAB fermentation.
Collapse
Affiliation(s)
- Shiyao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China.
| | - Zhixun Shang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China.
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China.
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
18
|
Xue R, Li H, Liu S, Hu Z, Wu Q, Ji H. Substitution of soybean meal with Clostridium autoethanogenum protein in grass carp (Ctenopharygodon idella) diets: Effects on growth performance, feed utilization, muscle nutritional value and sensory characteristics. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Xi L, Zhang J, Wu R, Wang T, Ding W. Characterization of the Volatile Compounds of Zhenba Bacon at Different Process Stages Using GC-MS and GC-IMS. Foods 2021; 10:2869. [PMID: 34829149 PMCID: PMC8622190 DOI: 10.3390/foods10112869] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Zhenba bacon (ZB), a type of Chinese traditional bacon with a long history, has attracted considerable attention in the Southwest of China for its unique flavor. To elucidate the changing course of aroma components during the process of ZB, four stages of process stages were assessed by GC-MS and GC-IMS coupled with multivariate data analysis. A total of 44 volatile compounds were identified by GC-IMS, including 5 esters, 8 alcohols, 12 aldehydes, 3 ketones, 1 furan and 2 sulfides; 40 volatile compounds were identified by GC-MS, 4 ketones, 7 phenols, 8 alcohols, 6 esters, 6 aldehydes, and 6 other compounds were detected. During the curing period, the amount and content of esters in Zhenba bacon gradually increased. Phenols appear in large quantities during the smoking period. The VOCs (volatile organic compounds) in the gallery plots were the most diverse in YZ samples, which are mainly esters. POV (peroxide value) and TBARS (thiobarbituric acid reactive substance) showed that lipid oxidation played an important role in the formation of volatile flavor components of bacon. This study provides valuable analytical data to explain the flavor formation of Zhenba bacon.
Collapse
Affiliation(s)
- Linjie Xi
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (L.X.); (R.W.); (T.W.)
| | - Jing Zhang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China;
| | - Ruixiao Wu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (L.X.); (R.W.); (T.W.)
| | - Tian Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (L.X.); (R.W.); (T.W.)
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (L.X.); (R.W.); (T.W.)
| |
Collapse
|