1
|
Wang Z, He T, Fang Y, Lan Z, Liu B, Kong KW, Sun J, He X. Impact of processing methods in shaping taste, flavor, antioxidants, and metabolites in teas (Camellia sinensis): A multi-method analysis. Food Res Int 2025; 208:116060. [PMID: 40263873 DOI: 10.1016/j.foodres.2025.116060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 04/24/2025]
Abstract
This study systematically examined the effects of processing techniques on the flavor profiles and functional attributes of tea derived from fresh leaves (Camellia sinensis) of identical origin. Pu-erh raw tea (PRT), white tea (WT), and black tea (BT) were produced through distinct processing protocols (non-fermented, lightly fermented, and fully fermented, respectively). Antioxidant activity and sensory characteristics were evaluated alongside comprehensive metabolomic analyses using GC-IMS, GC-MS, and UHPLC-QTOF-MS. PRT exhibited superior antioxidant capacity with pronounced bitterness and astringency, whereas WT displayed fruity-sweet notes and BT demonstrated a mellow profile linked to fermentation. Metabolomic profiling identified six discriminative biomarkers and two pivotal compounds differentiating tea types, alongside six key metabolic pathways (e.g., secondary metabolite biosynthesis) driving compositional variations. These findings elucidate processing-induced biochemical transformations, offering insights for quality optimization and consumer-oriented tea selection.
Collapse
Affiliation(s)
- Zhenxing Wang
- Key Laboratory for Conservation and Utilization of In-Forest Resource, Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Tingyang He
- Key Laboratory for Conservation and Utilization of In-Forest Resource, Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Yue Fang
- Key Laboratory for Conservation and Utilization of In-Forest Resource, Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Zengquan Lan
- Key Laboratory for Conservation and Utilization of In-Forest Resource, Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Benying Liu
- Yunnan Provincial Key Laboratory of Tea Science, Tea Reseach Institute, Yunnan Academy of Academy Science, Menghai, 666201, China.
| | - Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiahong He
- Key Laboratory for Conservation and Utilization of In-Forest Resource, Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
2
|
Ntezimana B, Xu W, Li Y, Zhou J, Pathak S, Chen Y, Yu Z, Zhang D, Ni D. Integrated Transcriptomic and Metabolomic Analyses Reveal Changes in Aroma- and Taste-Related Substances During the Withering Process of Black Tea. Foods 2024; 13:3977. [PMID: 39683049 DOI: 10.3390/foods13233977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Withering is one of the major processing steps critical for the quality of black tea. In this study, we investigated the mechanisms underlying the physicochemical changes in metabolites and gene expression during the withering process of black tea using metabolomic and transcriptomic approaches, respectively. Based on gas chromatography/mass spectrometry non-targeted metabolomic approaches (GC-MS) and ultra-high performance liquid chromatograph-tandem mass spectrometry (UHPLC-MS/MS), a total of 76 volatile compounds and 160 non-volatile compounds were identified from tea leaves, respectively. RNA-seq analysis revealed that the number of differentially expressed genes (DEGs) for the comparative combination of withering time (i.e., W4h, W6h, W8h, W10h, and W12h) compared with CK (i.e., fresh leaves) were 3634, 2906, 4127, 5736, and 7650, respectively. The core genes in starch metabolism, namely alpha-amylase (AMY) and beta-amylase (BAM), were upregulated as withering time increased. AMY and BAM contributed to the decomposition of starch to increase the soluble sugars. The content of tea leaf alcohols and aldehydes, which are the vital contributors for greenish aroma, gradually decreased as withering time increased due to the downregulation of associated genes while the compounds related to sweet and fruity characteristics increased due to the upregulated expression of related genes. Most DEGs involved in amino acids were significantly upregulated, leading to the increase in free amino acids content. However, DEGs involved in catechins metabolism were generally downregulated during withering, and resulted in a reduction in catechins content and the accumulation of theaflavins. The same trend was observed in alpha-linolenic acid metabolism-related genes that were downregulated and enhanced the reduction in grassy aroma in black tea. The weighted gene co-expression network analysis (WGCNA) of DEGs showed that one module can be associated with more components and one component can be regulated by various modules. Our findings provide new insights into the quality formation of black tea during the withering process.
Collapse
Affiliation(s)
- Bernard Ntezimana
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Wenluan Xu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Yuchuan Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Sujan Pathak
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan 430070, China
| | - Dejiang Ni
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Moreira J, Aryal J, Guidry L, Adhikari A, Chen Y, Sriwattana S, Prinyawiwatkul W. Tea Quality: An Overview of the Analytical Methods and Sensory Analyses Used in the Most Recent Studies. Foods 2024; 13:3580. [PMID: 39593996 PMCID: PMC11593154 DOI: 10.3390/foods13223580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Tea, one of the world's most consumed beverages, has a rich variety of sensory qualities such as appearance, aroma, mouthfeel and flavor. This review paper summarizes the chemical and volatile compositions and sensory qualities of different tea infusions including black, green, oolong, dark, yellow, and white teas based on published data over the past 4 years (between 2021 and 2024), largely focusing on the methodologies. This review highlights the relationships among the different processing methods of tea and their resulting chemical and sensory profiles. Environmental and handling factors during processing, such as fermentation, roasting, and drying are known to play pivotal roles in shaping the unique flavors and aromas of different types of tea, each containing a wide variety of compounds enhancing specific sensory characteristics like umami, astringency, sweetness, and fruity or floral notes, which may correlate with certain groups of chemical compositions. The integration of advanced analytical methods, such as high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS), with traditional sensory analysis techniques was found to be essential in the evaluation of the chemical composition and sensory attributes of teas. Additionally, emerging approaches like near-infrared spectroscopy (NIRS) and electronic sensory methods show potential in modern tea evaluation. The complexity of tea sensory characteristics necessitates the development of combined approaches using both analytical methods and human sensory analysis for a comprehensive and better understanding of tea quality.
Collapse
Affiliation(s)
- Juan Moreira
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Jyoti Aryal
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
| | - Luca Guidry
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (L.G.); (Y.C.)
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
| | - Yan Chen
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (L.G.); (Y.C.)
| | - Sujinda Sriwattana
- Product Development Technology Division, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
| |
Collapse
|
4
|
Qi D, Shi Y, Lu M, Ma C, Dong C. Effect of withering/spreading on the physical and chemical properties of tea: A review. Compr Rev Food Sci Food Saf 2024; 23:e70010. [PMID: 39267185 DOI: 10.1111/1541-4337.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Withering and spreading, though slightly differing in their parameters, share the same aim of moisture reduction in tea leaves, and they have a strong impact on the physical and chemical properties of tea. Even though researchers tend to pay close attention to the characteristic crafts of different teas, increasing investigations begin to focus on the withering process due to its profound effects on the composition and content of quality-related compounds. This review provides an overview of tea withering process to address questions comprehensively during withering. Hence, it is expected in this review to figure out factors that affect withering results, the way withering influences the physical and chemical properties of withered leaves and tea quality, and intelligent technologies and devices targeted at withering processes to promote the modernization of the tea industry. Herein, several key withering parameters, including duration, temperature, humidity, light irradiation, airflow, and more, are tailored to different tea types, demanding further exploration of advanced withering devices and real-time monitoring systems. The development of real-time monitoring technology enables objective and real-time adjustment of withering status in order to optimize withering results. Tea quality, including taste, aroma, and color quality, is first shaped during withering due to the change of composition and content of quality-related metabolites through (non)enzymatic reactions, which are easily influenced by the factors above. A thorough understanding of withering is key to improving tea quality effectively and scientifically.
Collapse
Affiliation(s)
- Dandan Qi
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yali Shi
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Min Lu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chengying Ma
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, Guangdong, China
| | - Chunwang Dong
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
5
|
Feng J, Zhuang J, Chen Q, Lin H, Chu Q, Chen P, Wang F, Yu B, Hao Z. The effect of maturity of tea leaves and processing methods on the formation of milky flavor in white tea - A metabolomic study. Food Chem 2024; 447:139080. [PMID: 38520904 DOI: 10.1016/j.foodchem.2024.139080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Targeted metabolomics combined with chemometrics were applied to investigate the flavor profiles of 4 white tea samples, which were produced from different maturity fresh tea leaves with different withering methods. Mature leaves that underwent novel withering process at higher temperature (28-30℃) and humidity (75 ± 3 %) (MN) were characterized by intense milky flavor. The content of free amino acids, catechins, and soluble sugars in MN were significantly lower than that in the other 3 tea samples, resulting in a sweet and mellow taste with low bitterness. Meanwhile, MN possessed the highest intensity of milky aroma, which could be mainly attributed to the existence of dihydro-5-pentyl-2(3H)-furanone and 2-pentyl-furan as the key volatile substances with coconut and creamy fragrance. These findings provide insight into the substance foundations of milky flavor, and identified leaf maturity and processing method as the determining factors of the milk-flavored white tea (MFWT).
Collapse
Affiliation(s)
- Jiao Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jiayun Zhuang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qianlian Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Fang Wang
- Tea Sensory Evaluation Research Center, Ningde Normal University, Ningde 352000, Fujian, China
| | - Bugui Yu
- Zhenghe Ruiming Tea Co., LTD, Zhenghe 353600, Fujian, China
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, Fujian, China.
| |
Collapse
|
6
|
Xie Z, Zhang D, Zhu J, Luo Q, Liu J, Zhou J, Wang X, Chen Y, Yu Z, Ni D. Mechanism of aroma enhancement methods in accelerating Congou black tea acidification subjected to room temperature storage. Food Chem 2024; 438:137837. [PMID: 37979270 DOI: 10.1016/j.foodchem.2023.137837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 11/20/2023]
Abstract
Acidification of aroma-enhanced black tea during storage was studied. UPLC-Q-TOF/MS (Ultra Performance Liquid Chromatography and Quadrupole-Time of Flight Mass Spectrometer) and HPLC (High-Performance Liquid Chromatography) analysis of non-volatile substances and organic acids revealed a decrease of soluble sugars and amino acids in aroma-enhanced black tea, while an increase in organic acids such as oxalic acid, malic acid and quinic acid. Further in vitro experiments indicated that the acidification of aroma-enhanced tea during storage can be attributed to decomposition of sugars and amino acids by heating, oxidation of aromatic aldehydes. Meanwhile, the amino acids, catechins, soluble sugars and flavonoids that constitute the taste of black tea are further reduced, changing the taste composition of tea infusion and further increasing its acidity. This study revealed the reasons for black tea acidification during aroma enhancement and storage and provided a theoretical basis for improving black tea quality.
Collapse
Affiliation(s)
- Zixuan Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Junyu Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Qianqian Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Jun Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xiaoyong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China; Hubei Hongshan Laboratory, Wuhan 430070, People's Republic of China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China; Hubei Hongshan Laboratory, Wuhan 430070, People's Republic of China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China; Hubei Hongshan Laboratory, Wuhan 430070, People's Republic of China.
| |
Collapse
|
7
|
Aaqil M, Peng C, Kamal A, Nawaz T, Zhang F, Gong J. Tea Harvesting and Processing Techniques and Its Effect on Phytochemical Profile and Final Quality of Black Tea: A Review. Foods 2023; 12:4467. [PMID: 38137271 PMCID: PMC10743253 DOI: 10.3390/foods12244467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Tea (Camellia sinensis) has grown for over 300 years and is recognized worldwide as among other well-renowned crops. The quality of black tea depends on plucking (method, standard, season, and intervals), withering and rolling (time and temperature), fermentation (time, temperature, and RH), drying (temperature and method), and storage conditions, which have a high influence on the final quality of black tea. At the rolling stage, the oxidation process is initiated and ends at the early drying stage until the enzymes that transform tea polyphenols into thearubigins (TRs) and theaflavins (TFs) are denatured by heat. By increasing fermentation time, TRs increased, and TF decreased. Each is liable for black tea's brightness, taste, and color. The amino acids and essential oils also grant a distinctive taste and aroma to black tea. Throughout withering, rolling, and fermentation, increases were found in essential oil content, but during drying, a decrease was observed. However, the Maillard reaction, which occurs when amino acids react with sugar during drying, reimburses for this decrease and enhances the flavor and color of black tea. As compared to normal conditions, accelerated storage showed a slight decrease in the total color, TF, and TRs. It is concluded that including plucking, each processing step (adopted technique) and storage system has a remarkable impact on black tea's final quality. To maintain the quality, an advanced mechanism is needed to optimize such factors to produce high-quality black tea, and an objective setting technique should be devised to attain the desirable quality characteristics.
Collapse
Affiliation(s)
- Muhammad Aaqil
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.A.); (F.Z.)
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (C.P.); (A.K.)
| | - Ayesha Kamal
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (C.P.); (A.K.)
| | - Taufiq Nawaz
- College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA;
| | - Fei Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.A.); (F.Z.)
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.A.); (F.Z.)
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| |
Collapse
|
8
|
Lu X, Lin Y, Tuo Y, Liu L, Du X, Zhu Q, Hu Y, Shi Y, Wu L, Lin J. Optimizing Processing Techniques of Oolong Tea Balancing between High Retention of Catechins and Sensory Quality. Foods 2023; 12:4334. [PMID: 38231828 DOI: 10.3390/foods12234334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/19/2024] Open
Abstract
Catechins are the major flavor substances in teas, which have a variety of health effects; however, high catechin and high sensory quality are a pair of contradictions that are difficult to coordinate. To explore the processing procedure with high catechins and high sensory quality, a single-factor processing experiment was carried out over the processing production of oolong tea. Combined with orthogonal partial least square discriminant analysis (OPLS-DA), correlation analysis, and principal component analysis (PCA), the optimal production procedure for oolong tea is as follows: red light withering for 8 h, leaf rotating for 10 min with a total standing time for 8 h, drum roasting for 5 min at 290 °C, low-temperature rolling (flattening at 4 °C for 5 min, without pressure for 1 min and under pressure for 5 min), microwave drying (800 W for 7.5 min). This study demonstrates a significant increase in the retention of catechins, which contributes to the mellow and brisk tastes of oolong tea, addressing the challenge of catechin content and sensory quality. Our study provides a novel insight into the relationship between the oolong tea processing and flavor formation.
Collapse
Affiliation(s)
- Xiaofeng Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyan Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanming Tuo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijia Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Du
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunfei Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yutao Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Li F, Boateng ID, Yang XM, Li Y, Liu W. Effects of processing methods on quality, antioxidant capacity, and cytotoxicity of Ginkgo biloba leaf tea product. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4993-5003. [PMID: 36973882 DOI: 10.1002/jsfa.12577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 02/04/2023] [Accepted: 03/27/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ginkgo biloba leaves contain beneficial flavonoids, bilobalide (BB), and ginkgolides. However, the toxic ginkgolic acid (GA) limit its application. In this study, various traditional processing methods were used to prepare G. biloba leaf tea (GBLT), including white tea, black tea, dark tea, green tea, and freeze-dried as control, followed by investigations of their effects on quality, antioxidant capacity, bioactive components, and cytotoxicity of the tea products. RESULTS Results showed that different processing methods significantly impact the tea products' quality indexes and the principal component analysis (PCA) and hierarchical cluster analysis (HCA) corroborated it. White tea had the highest total sugar (TS) and GA content and the most potent cytotoxicity on HepG2 cells. However, TS and GA content and the cytotoxicity of GBLT markedly decreased during fermentation and fixation. Moreover, white tea possessed higher total phenolic content (TPC), total flavonoid content (TFC), and more vigorous antioxidant activities than green tea, black tea, and dark tea. Terpene trilactones value was stable, but different catechins contents fluctuated according to the manufacturing process of different GBLTs. Among the four GBLTs, dark tea combining fixation and fermentation had the lowest GA content and cytotoxicity, less bioactive components reduction, appropriate quality, and stronger flavor. CONCLUSION These findings demonstrate that fixation and fermentation help reduce GAs during the manufacturing of GBLT. However, their ability to retain bioactive substances needs further optimization in future studies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengnan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Isaac D Boateng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO, USA
| | - Xiao-Ming Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuanyuan Li
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, China
| | - Weimin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Wu Z, Jiao Y, Jiang X, Li C, Sun W, Chen Y, Yu Z, Ni D. Effects of Sun Withering Degree on Black Tea Quality Revealed via Non-Targeted Metabolomics. Foods 2023; 12:2430. [PMID: 37372642 DOI: 10.3390/foods12122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, the effects of different sun withering degrees (75% (CK), 69% (S69), 66% (S66), 63% (S63), and 60% (S60) water content in the withered leaves) on black tea sensory quality were investigated by means of sensory evaluation plus metabolomics analysis. Sensory evaluation results showed higher sensory quality scores for the black tea in S69-S66, due to better freshness, sweeter taste, and a sweet and even floral and fruity aroma. Additionally, 65 non-volatile components were identified using Ultra Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-TOF/MS). Among them, the content increase of amino acids and theaflavins was found to promote the freshness and sweetness of black tea. The aroma of tea was analyzed using combined Solvent Assisted Flavor Evaporation-Gas Chromatography-Mass Spectrometry (SAFE-GC-MS) and Headspace-Solid Phase Micro Extract-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS), and 180 volatiles were identified, including 38 variable importance in projection (VIP) > 1 (p < 0.05) and 25 Odor Activity Value (OAV) > 1 volatiles. Statistical analysis revealed 11 volatiles as potential major aroma differential metabolites in black tea with a different sun withering degree, such as volatile terpenoids (linalool, geraniol, (E)-citral, and β-myrcene), amino-acid-derived volatiles (benzeneethanol, benzeneacetaldehyde, and methyl salicylate), carotenoid-derived volatiles (jasmone and β-damascenone), and fatty-acid-derived volatiles ((Z)-3-hexen-1-ol and (E)-2-hexenal). Among them, volatile terpenoids and amino acid derived volatiles mainly contributed to the floral and fruity aroma quality of sun-withered black tea.
Collapse
Affiliation(s)
- Zhuanrong Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Yuanfang Jiao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Xinfeng Jiang
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Chen Li
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Zhi Yu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| |
Collapse
|
11
|
Fang X, Liu Y, Xiao J, Ma C, Huang Y. GC-MS and LC-MS/MS metabolomics revealed dynamic changes of volatile and non-volatile compounds during withering process of black tea. Food Chem 2023; 410:135396. [PMID: 36634561 DOI: 10.1016/j.foodchem.2023.135396] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
High-performance liquid chromatography (HPLC), headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and ultra-high performance liquid chromatography-Q-Exactive HF-X mass spectrometer (UHPLC-Q-Exactive HF/MS) were carried out to reveal dynamic changes of volatile and non-volatile compounds during the withering process of black tea. A total of 118 volatile organic compounds (VOCs) and 648 metabolites were identified in fresh and withered tea-leaves, respectively. Among them, 47 VOCs (OAV > 1.0) for the aroma formation, and 46 characteristic metabolites (VIP > 1.50, p < 0.01) selected through orthonormal partial least squares-discriminant analysis, indicated the withering contribution during black tea processing. Overall, the withering promoted alcohols, aldehydes, phenols, heterocyclic oxygen, hydrocarbons and halogenated hydrocarbons through relevant hydrolyzation, decomposition, terpene synthesis, and O-methylation. The hydrolyzation, O-methylation, condensation and N-acylation of kaempferol glycosides, quercetin glycosides, ester catechins, and gallic acid generated the accumulation of methoxyl flavonoids and flavonoid glucosides, dihydrokaempferol, syringic acid, theaflavins, and N-acylated amino acids, respectively.
Collapse
Affiliation(s)
- Xin Fang
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430064, China
| | - Yanan Liu
- Zhejiang Minghuang Natural Products Development Co., Ltd, Hangzhou, Zhejiang 310000, China
| | - Jingyi Xiao
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430064, China
| | - Cunqiang Ma
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430064, China
| | - Youyi Huang
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430064, China.
| |
Collapse
|
12
|
Yan Z, Zhou Z, Jiao Y, Huang J, Yu Z, Zhang D, Chen Y, Ni D. Hot-Air Drying Significantly Improves the Quality and Functional Activity of Orange Black Tea Compared with Traditional Sunlight Drying. Foods 2023; 12:1913. [PMID: 37174450 PMCID: PMC10178095 DOI: 10.3390/foods12091913] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The quality of traditional sunlight-dried orange black tea can be affected by weather variations, leading to its quality instability. This study investigated the feasibility of replacing sunlight drying with a new hot-air drying method in orange black tea production. The hot-air-dried orange black tea showed better sensory quality than the traditional outdoor-sunlight-dried tea, with a harmonious fruity aroma and sweet-mellow taste. The content of polyphenols and other quality components in the peel and tea leaves was significantly higher after hot-air drying than after sunlight drying. GC-MS analysis showed that the total number of volatile components of hot-air-dried tea (3103.46 μg/g) was higher than that of sunlight-dried tea (3019.19 μg/g). Compared with sunlight-dried orange black tea, the hot-air-dried orange black tea showed higher total antioxidant capacity, with an increase of 21.5% (FRAP), 7.5% (DPPH), and 17.4% (ABTS), as well as an increase of 38.1% and 36.3% in the inhibitory capacity on α-glucosidase and α-amylase activities. Further analysis of the effects of different drying temperatures (40, 45, 50, and 60 °C) on the quality of orange black tea showed that the tea quality gradually decreased with the increase in drying temperature, with the most obvious decrease in the quality of orange black tea at the drying temperature of 60 °C. Low-temperature (40 °C) dried tea had better aroma coordination, higher fruit flavor, greater sweet-mellow taste, and higher retention of functional active substances in orange peel and black tea. In summary, compared with traditional sunlight drying, the hot-air drying method could reduce the drying time from 90 h to 20 h and improve the sensory quality and functional activity of orange black tea, suggesting it can replace the traditional sunlight drying process. This work is significant for improving the quality of orange black tea in practical production.
Collapse
Affiliation(s)
- Zhi Yan
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihu Zhou
- Public Service Center of Quyuan Town, Zigui County, Yichang 443600, China
| | - Yuanfang Jiao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasheng Huang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Zhang S, Jiang X, Li C, Qiu L, Chen Y, Yu Z, Ni D. Effect of Fermentation Humidity on Quality of Congou Black Tea. Foods 2023; 12:foods12081726. [PMID: 37107521 PMCID: PMC10138149 DOI: 10.3390/foods12081726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
This study investigated the effect of different fermentation humidities (55%, 65%, 75%, 85% and 95%) on congou black tea quality and bioactivity. Fermentation humidity mainly affected the tea's appearance, aroma and taste quality. The tea fermented at low humidity (75% or below) showed a decrease in tightness, evenness and moistening degree, as well as a heavy grassy and greenish scent, plus a green, astringent and bitter taste. The tea fermented at a high humidity (85% or above) presented a sweet and pure aroma, as well as a mellow taste, plus an increase of sweetness and umami. With increasing fermentation humidity, the tea exhibited a drop in the content of flavones, tea polyphenols, catechins (EGCG, ECG) and theaflavins (TF, TF-3-G), contrasted by a rise in the content of soluble sugars, thearubigins and theabrownins, contributing to the development of a sweet and mellow taste. Additionally, the tea showed a gradual increase in the total amount of volatile compounds and in the content of alcohols, alkanes, alkenes, aldehydes, ketones and acids. Moreover, the tea fermented at a low humidity had stronger antioxidant activity against 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) and a higher inhibiting capability on the activities of α-amylase and α-glucosidase. Overall results indicated the desirable fermentation humidity of congou black tea should be 85% or above.
Collapse
Affiliation(s)
- Sirui Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinfeng Jiang
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Chen Li
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Li Qiu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Zhi Yu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| |
Collapse
|
14
|
Tang MG, Zhang S, Xiong LG, Zhou JH, Huang JA, Zhao AQ, Liu ZH, Liu AL. A comprehensive review of polyphenol oxidase in tea (Camellia sinensis): Physiological characteristics, oxidation manufacturing, and biosynthesis of functional constituents. Compr Rev Food Sci Food Saf 2023; 22:2267-2291. [PMID: 37043598 DOI: 10.1111/1541-4337.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 04/14/2023]
Abstract
Polyphenol oxidase (PPO) is a metalloenzyme with a type III copper core that is abundant in nature. As one of the most essential enzymes in the tea plant (Camellia sinensis), the further regulation of PPO is critical for enhancing defensive responses, cultivating high-quality germplasm resources of tea plants, and producing tea products that are both functional and sensory qualities. Due to their physiological and pharmacological values, the constituents from the oxidative polymerization of PPO in tea manufacturing may serve as functional foods to prevent and treat chronic non-communicable diseases. However, current knowledge of the utilization of PPO in the tea industry is only available from scattered sources, and a more comprehensive study is required to reveal the relationship between PPO and tea obviously. A more comprehensive review of the role of PPO in tea was reported for the first time, as its classification, catalytic mechanism, and utilization in modulating tea flavors, compositions, and nutrition, along with the relationships between PPO-mediated enzymatic reactions and the formation of functional constituents in tea, and the techniques for the modification and application of PPO based on modern enzymology and synthetic biology are summarized and suggested in this article.
Collapse
Affiliation(s)
- Meng-Ge Tang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng Zhang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing-Hui Zhou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Qing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhong-Hua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Ling Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
15
|
Farag MA, Elmetwally F, Elghanam R, Kamal N, Hellal K, Hamezah HS, Zhao C, Mediani A. Metabolomics in tea products; a compile of applications for enhancing agricultural traits and quality control analysis of Camellia sinensis. Food Chem 2023; 404:134628. [DOI: 10.1016/j.foodchem.2022.134628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
16
|
Chen M, Fang D, Gou H, Wang S, Yue W. Quantitative Measurement Reveals Dynamic Volatile Changes and Potential Biochemical Mechanisms during Green Tea Spreading Treatment. ACS OMEGA 2022; 7:40009-40020. [PMID: 36385841 PMCID: PMC9647863 DOI: 10.1021/acsomega.2c04654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Quantitative data provide clues for biochemical reactions or regulations. The absolute quantification of volatile compounds in tea is complicated by their low abundance, volatility, thermal liability, matrix complexity, and instrumental sensitivity. Here, by integrating solvent-assisted flavor evaporation extraction with a gas chromatography-triple quadrupole mass spectrometry platform, we successfully established a method based on multiple reaction monitoring (MRM). The method was validated by multiple parameters, including the linear range, limit of detection, limit of quantification, precision, repeatability, stability, and accuracy. This method was then applied to measure temporal changes of endogenous volatiles during green tea spreading treatment. In total, 38 endogenous volatiles were quantitatively measured, which are derived from the shikimic acid pathway, mevalonate pathway, 2-C-methylerythritol-4-phosphate pathway, and fatty acid derivative pathway. Hierarchical clustering and heat-map analysis demonstrated four different changing patterns during green tea spreading treatment. Pathway analysis was then conducted to explore the potential biochemistry underpinning these dynamic change patterns. Our data demonstrated that the established MRM method showed high selectivity and sensitivity for quantitative tea volatile measurement and offered novel insights about volatile formation during green tea spreading.
Collapse
Affiliation(s)
- Mingjie Chen
- College
of Life Sciences, Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Dongsheng Fang
- College
of Life Sciences, Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Huan Gou
- College
of Life Sciences, Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shiya Wang
- College
of Life Sciences, Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Wenjie Yue
- Jinshan
College, Fujian Agriculture and Forestry
University, Fuzhou, Fujian 350002, China
| |
Collapse
|